MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Study: Repetitive Motion Speeds Nanoparticle Uptake

Abstract:
Newly published research by Rice University chemists and North Carolina State University toxicologists finds that repetitive movement can speed the uptake of nanoparticles through the skin. The research, which appears in the Jan. 10 issue of the American Chemical Society's journal Nano Letters, involved vitro experiments on animal skin that was exposed to buckyball-containing amino acids. Researchers found that the more the skin was flexed after exposure, the more buckyballs it took up and the deeper they penetrated.

Study: Repetitive Motion Speeds Nanoparticle Uptake

HOUSTON, TX | Posted on January 4th, 2007

Newly published research by Rice University chemists and North Carolina State University toxicologists finds that repetitive movement can speed the uptake of nanoparticles through the skin.

The research is based on in vitro experiments involving animal skin that was exposed to buckyball-containing amino acids. It appears in the Jan. 10 issue of the American Chemical Society's journal Nano Letters.

"Our results confirm that repetitive motion can speed the passage of nanoparticles through the skin," said Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State. "As more nanoparticles find their way into the workplace and consumer goods, and as scientists look for innovative ways to use nanoparticles to delivery drugs into the body, it
is critical that the nanoscience community identify these types of external exposure factors."

In the study, a solution of buckyball-containing amino acids were placed on small sections of pig skin. In some experiments, the skin was held still, and in others it was flexed for either an hour or an hour and a half. Measurements were taken eight hours after exposure and 24 hours after
exposure.

The team found that the more the skin was flexed, the more buckyballs it took up and the deeper they penetrated. Penetration was also found to be deeper after 24 hours than after just eight.

Buckyballs, are spherical, soccer-ball-shaped molecules containing 60 carbon atoms. The buckyballs used in the study were part of an innovative molecule called Bucky amino acid, or Baa, that was created in the lab of Rice chemist Andrew Barron. Baa is a marriage of buckyballs and phenylalanine, one of the 20 essential amino acids that are the building blocks of all proteins.

"The findings were a bit surprising because the Bucky amino acids tend to form spherical clusters that are up to 12 times larger in diameter than the known width of intercellular gaps in the skin," said Barron, the Charles W. Duncan Jr.-Welch Professor of Chemistry, professor of materials science and associate dean for industry interactions and technology transfer. "It's not clear why flexing increases the uptake of fullerene peptides, but it will be important to further investigate these mechanisms as we study the medical potential of Bucky amino acids."

Co-authors include NC State graduate student Jillian Rouse and Rice graduate student Jianzhong Yang.

The research was funded by the Environmental Protection Agency, the National Academies Keck Futures Initiative and the Welch Foundation.

####

About Rice University
About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Safety-Nanoparticles/Risk management

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Human Interest/Art

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project