Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Manuscript Demonstrates DNA Delivery and Expression in the Mouse Retina

January 9th, 2007

Manuscript Demonstrates DNA Delivery and Expression in the Mouse Retina

Abstract:
Copernicus Therapeutics, Inc. announced today that a research team at University of Oklahoma Health Sciences Center, led by Dr. Muna Naash, professor of Cell Biology, demonstrated that Copernicus' DNA nanoparticles safely and effectively deliver and express DNA in the rods and cones of the mouse retina. According to Dr. Naash's team, current data indicate that greater than 95% of these retinal cells expressed the DNA nanoparticle and there was no evidence of toxicity. These findings, published on December 20, 2006 in the journal PLoS ONE, have significant implications for the development of DNA-based therapeutics for various eye disorders, including retinitis pigmentosa and macular degeneration company officials said.

"These exciting results suggest that genetic replacement therapy is feasible for various eye diseases," said Robert C. Moen, M.D., Ph.D., president and CEO of Copernicus. "The Copernicus DNA nanoparticle formulation is safe and effective and permits a non-viral approach to treat human disease by introducing a normal copy of the underlying gene that is responsible for the disease process. In addition to corrective therapy for genetic diseases such as retinitis pigmentosa, nucleic acid nanoparticles may provide effective treatments for more complex disorders such as diabetic retinopathy, macular degeneration, and various diseases that injure ganglion cells and the optic nerve."

Source:
businesswire.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project