Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Prion fingerprints detected with glowing molecule

November 20th, 2007

Prion fingerprints detected with glowing molecule

Abstract:
An effective and sensitive new method for detecting and characterizing prions, the infectious compounds behind diseases like mad cow disease, is now being launched by researchers at Linköping University in Sweden, among other institutions.

Mad cow disease (BSE), which has caused the death of more than 200,000 cattle and 165 people in the U.K., has now abated. But other prion disorders are on the rise, and there is concern that new strains will infect humans. Prions are not readily transmittable from species to species, but once they have broken through the species barrier they can rapidly adapt and become contagious within the species. Intensive work is now underway to find new, more sensitive methods for detecting these potentially deadly protein structures and distinguish between various strains.

The method now being presented in the journal Nature Methods is based on a fluorescent molecule, a so-called conjugated polymer, which was developed at Linköping University.

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project