Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The Future of Universal Water

Abstract:
The DC-based research and consulting firm Social Technologies recently released a series of 12 briefs that shed light on the top areas for technology innovation through 2025. The brief on universal water, by futurist Peter von Stackelberg, is the eighth trend in the series.

The Future of Universal Water

Washington, DC | Posted on February 25th, 2008

"The ability to produce abundant, cheap, clean water has been a reality for much of World 1 for at least a century," explains von Stackelberg. "Large-scale water purification and distribution systems have been fundamental to better health and longer lives, and have made possible comfortable modern lifestyles."

In Worlds 2 and 3, he notes, efforts focused on providing clean water have contributed to significant improvements in health and lifestyle as well. However, even the availability of water hangs in the balance for much of the world's population.

"Water is becoming increasingly scarce," says von Stackelberg, pointing to the fact that less than 2% of the planet's ample water store is fresh, and much of that is threatened by pollution. "By 2025, about 3.4 billion people will live in regions that are defined by the UN as water-scarce."

While much of the future of universal water depends on political and social activity, technological advances in three major areas will be critical for the hydrological future: desalination of seawater or brackish groundwater, purification of water containing chemical or biological contaminants, and conservation to cut demand.

• Flash desalination. One approach is flash desalination, a process that heats water and then evaporates it in a low-pressure chamber; it has been in use for decades but is energy-intensive and costly. Indian scientists developed a developed a low-temperature, thermal-desalination demonstration facility that cuts energy input by pumping water seawater from the surface and flash evaporating it at very low pressure. The vapor is then condensed using cold deep-sea water.

• Water harvesting. Captured rainwater can supplement other sources of water. In Beijing, for instance, the National Stadium built for the 2008 Olympic Games is designed with a nano-filtration system and underground pools that can capture and process up to 100 tons of rainwater an hour. Seattle's King Street Center, a 327,000-square-foot commercial building constructed in 1999, captures rainwater for use in the building's sewage system and for landscaping needs, saving about 1.5 million gallons of water a year.

• Smart water application technologies (SWAT). This is one way to curb water usage. For instance, irrigation of residential landscapes typically applies 30-40% more water than needed. But a system that has been tested in California, Washington, and several other western states has linked sensors that monitor rainfall and soil moisture to a "smart" controller. Water consumption has decreased by an average of 26%, with some consumers cutting their usage by as much as 59%.

CHALLENGES AHEAD

Multiple challenges—from growing populations to economic development to climate change—will result in increasing pressure on water supplies in many regions, even in World 1 countries. Ultimately, public attitudes about water may prove to be the largest challenge in implementing new technologies.

• Climate change. Global climate change could have dramatic impacts on water supplies, complicating efforts to meet demands. As sea levels rise, saltwater is likely to contaminate freshwater aquifers in coastal areas as well as intruding into rivers and freshwater estuaries. "Rain and snowfall patterns may change as a result of climate change, altering the amount of precipitation that entire regions receive, and weather extremes will likely cause droughts that limit water supplies, and floods that knock out water and sewage treatment infrastructure," von Stackelberg says.

• Changing water attitudes. "A paradigm shift will be required if water shortages are to be avoided," von Stackelberg insists. Among these newer attitudes are the beliefs that human waste is a resource from which water can be harvested, and that storm water is a resource which needs to be captured and stored.

FORECASTS

"The future of universal water is simple," von Stackelberg suggests. "Use less, keep the available freshwater clean, and make more fresh water from saltwater to offset critical shortfalls."

He points to the following three gamechangers that may impact the future:

• Low-cost power for desalination. Major advances in the production of cheap energy could fundamentally change the economics of desalination for coastal regions. Low-cost alternative energy sources are among the surest ways to cut the cost of producing freshwater, whether by removing salt or other impurities.

• Nanowater: High-tech filtering. Nanoparticles, nano-tubes, and other nanomaterials may substantially increase the efficiency of the water desalination and purification processes, and may offer methods for removing new contaminants that are constantly being introduced into the environment.

• Nature-inspired water use: Use less, pollute less. Reducing demand for process water in high-use industrial applications as well as achieving zero wastewater discharge will be crucial for ensuring future water supplies. Garnering lessons from living organisms and natural systems is one of the driving principles behind green engineering, a movement to improve the environmental impact of products and processes.

LEARN MORE
To talk to Peter von Stackelberg about the business implications and other ideas surrounding the concept of universal water, contact Hope Gibbs, Social Technologies' leader of corporate communications:

Peter von Stackelberg ) Futurist

Peter von Stackelberg is the leader of Social Technologies' Futures Interactive program, a tool that enables organizations to find, analyze, and disseminate trend information. He brings more than a decade of experience as a futurist, strategic thinker, and writer to this work, while also serving as an adjunct professor in strategic management of technology and innovation at the State University of New York-Alfred, and as an advisor to the computer animation program at Alfred State. Areas of expertise: biotechnology, energy (green, renewable, oil), nanotechnology, future of technology, scenario planning.

####

About Social Technologies
Social Technologies is a global research and consulting firm specializing in the integration of foresight, strategy, and innovation. With offices in Washington DC, London, and Shanghai, Social Technologies serves the world’s leading companies, government agencies, and nonprofits. A holistic, long-term perspective combined with actionable business solutions helps clients mitigate risk, make the most of opportunities, and enrich decision-making. For information visit www.socialtechnologies.com, our blog: changewaves.socialtechnologies.com, and our newsletter: www.socialtechnologies.com/changewaves.

For more information, please click here

Contacts:
Hope Katz Gibbs
Leader, Corporate Communications
Social Technologies
1776 Massachusetts Ave. N.W. #815
Washington, DC 20036-1907
Phone : 202-223-2801 ext. 210
Fax : 202-223-2802

Copyright © Social Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project