Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Formulating challenge: Creating better epoxies for vacuum-infused aerospace parts

March 17th, 2008

Formulating challenge: Creating better epoxies for vacuum-infused aerospace parts

Abstract:
More attention is being focused on fabricating processes for aircraft structures that can save time and money and improve efficiency while yielding high-quality parts. Historically, nearly all aircraft designers have assumed autoclave cure as the norm, despite the well-documented cost and time advantages of out-of-autoclave processing. The formulation of epoxy-based resin systems that can be used to vacuum infuse dry fibers or preforms holds great promise for producing large, complex composite parts with less than 1 percent void content and controllable resin/fiber ratio. Vacuum infusion permits the use of inexpensive "soft" tooling and ambient/near-ambient curing to reduce autoclave processing costs and save energy.

A key to formulating one- and two-part epoxy resin systems for aerospace vacuum infusion is balancing viscosity with in-service performance. Huntsman Advanced Materials (The Woodlands, Texas), a pioneer with its trademarked RenInfusion epoxies for infusion processes, has found that through the use of nano-based toughening agents, new-generation infusion epoxies can be produced with physical property combinations that once were apparently diametrically opposed. For example, epoxy formulations have been developed that can be infused at temperatures less than 120ºF (49ºC) for two-part systems, and 180ºF (83ºC) for one-part systems, says Huntsman senior chemist Jim Hoge, delivering adequate pot life, a high glass transition temperature (Tg), and good toughness with high modulus. System dry Tg's are in the 280ºF to 350ºF (138ºC - 177ºC) range.

Source:
compositesworld.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project