Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Search for future hydrogen storage materials extends to investigation of hydrogen interactions with metal nanoparticles

Figure 1: A schematic depiction of hydrogen storage of palladium (Pd) and platiunum (Pt) nanoparticles (green, hydrogen; red, Pd; blue Pt).

Reproduced with permission from Ref. 1 © 2008 by the American Chemical Society
Figure 1: A schematic depiction of hydrogen storage of palladium (Pd) and platiunum (Pt) nanoparticles (green, hydrogen; red, Pd; blue Pt).

Reproduced with permission from Ref. 1 © 2008 by the American Chemical Society

Abstract:
The environmental impact of the use of hydrocarbons as fuels has led to a global search for cleaner energy sources. Hydrogen offers a greener alternative for transportation fuels, but a critical issue is the requirement of a safe and reliable hydrogen storage medium. Nanoparticles have advantages over bulk materials for hydrogen storage applications: they have a larger solid/gas interface area and shorter hydrogen diffusion paths, yielding potentially faster kinetics for gas absorption and desorption.

Search for future hydrogen storage materials extends to investigation of hydrogen interactions with metal nanoparticles

Japan | Posted on April 26th, 2008

In two recent communications published in the Journal of the American Chemical Society, Masaki Takata from the SPring-8 Centre, Harima, and his colleagues, including Hiroshi Kitagawa from Kyushu University, explore the hydrogen absorption and desorption behavior of palladium nanoparticles and of palladium core-platinum shell nanoparticles.

In the first communication1, the researchers address whether core-shell nanoparticles made of two metals store hydrogen. The team prepared structures with crystalline palladium cores of 6 nm diameter and crystalline platinum shells of thickness around 2 nm, and then characterized them using a variety of techniques.

Pressure-composition isotherms showed that the core-shell nanoparticles absorbed the same amount of hydrogen as homogenous palladium nanoparticles. Takata, Kitagawa and colleagues then performed solid state nuclear magnetic resonance (NMR) measurements with deuterium, a hydrogen isotope, to identify the absorption site of hydrogen. Surprisingly, they have found that while deuterium was dispersed in both palladium and platinum lattices, it was concentrated in the boundary region between the core and the shell (Fig. 1).

Palladium nanoparticles do not demonstrate complete reversibility in their hydrogen uptake and release, in contrast to their bulk counterparts. Takata, Kitagawa and colleagues explored this hysteresis in their second communication2. Using x-ray diffraction, they have found that the lattice constant of palladium nanoparticles of 6 nm diameter increases with exposure to increased hydrogen pressures. However, on evacuation of the hydrogen, the lattice does not return to its original value; it remains slightly larger.

Then, again using solid state NMR measurements with deuterium, the researchers have found that some deuterium atoms remained within the palladium lattice after evacuation of ‘free' deuterium from the system. They suggest that hydrogen atoms are trapped firmly within the lattice, which expands the crystal lattice, and hence lattice constant, of palladium. This, they say, explains why hydrogen absorption in these materials is not completely reversible.

The researchers conclude that their work provides a new understanding of the interactions between hydrogen and ‘nano-structured' solids, and could contribute to the development of practical hydrogen-storage materials.
Reference

1. Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Y., Kato, K. & Takata, M. Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. Journal of the American Chemical Society 130, 1818-1819 (2008).
2. Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Y., Kato, K. & Takata, M. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. Journal of the American Chemical Society 130, 1828-1829 (2008). | article |

####

About Riken Research
RIKEN is one of Japan’s largest research organisations with institutes and centres in various locations in Japan (see http://www.riken.jp/engn/r-world/link/index.html). RIKEN’s 3000+ researchers publish several hundred research articles in top scientific and technical journals every year across a broad spectrum of disciplines in physics, chemistry, biology, medicine, earth science and in many areas of technology, and the number of articles is growing year on year.

For more information, please click here

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article 1

article 2

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project