Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > In 'Mermaid's Hair,' a Search for a Cancer Cure

July 3rd, 2008

In 'Mermaid's Hair,' a Search for a Cancer Cure

Abstract:
A team of San Diego scientists are becoming increasingly convinced that the cure for cancer may be linked to a marine compound found within long strands of rosy-colored toxic bacteria that grow beneath mangroves in the South Pacific.

In a breakthrough discovery, researchers at the University of California, San Diego and the Scripps Institution of Oceanography identified a potent and stealthy compound in the bacteria, called "mermaid's hair," that can kill tumors and be delivered without harming healthy tissue -- thereby avoiding a major drawback to traditional cancer therapies such as radiation treatments and chemotherapy drugs.

Because the ScA compound naturally clumps into molecule-sized bits, called nanoparticles, it can be customized through nanotechnology to target specific cancer cells and spare healthy ones.

The minute particles can act like guided missiles, ferrying injected anti-cancer drugs to a tumor. Unlike conventional therapies, the particles Wrasidlo is using are expected to carry a small molecule that can attach itself and the drug only to blood vessels that feed the tumors.

Without nanotechnology, the compound would be too risky and would "never make it to the drug market," Wrasidlo said. "We now have the optimum way of getting the compound to the tumor and circulating it long-term throughout the body."

Source:
voiceofsandiego.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project