Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fat droplet nanoparticle delivers tumor suppressor gene to tumor and metastatic cells: Overcoming resistance to treatment

Abstract:
Dr. Esther Chang describes the most recent developments in human trials of the first systemic, non-viral, tumor-targeted, nanoparticle method designed to restore normal gene function to tumor cells while completely bypassing normal tissue April 21 at an American Association of Anatomists (AAA) scientific session at Experimental Biology 2009 in New Orleans.

Fat droplet nanoparticle delivers tumor suppressor gene to tumor and metastatic cells: Overcoming resistance to treatment

Bethesda, MD | Posted on April 20th, 2009

Dr. Chang, a molecular oncologist, and her colleagues at Georgetown University Medical Center's Lombardi Cancer Center, have developed a nanoparticle - about one thousandth smaller than a printed period -- that can travel through the blood stream. "Decorated" with a tumor-targeting antibody, the nanoparticle is able to locate primary and hidden metastatic tumor cells and deliver its payload: a fully functioning copy of the P53 tumor suppressor gene.

Normal cells have two copies of the functioning P53 gene. The protein produced by the P53 gene is activated to either coordinate the repair process in cells or induce cell suicide. Loss of normal p53 function results in malignant cell growth and has been linked to resistance to radiotherapy and chemotherapy in a number of cancers.

In earlier work using animal models, Dr. Chang's group delivered functional p53 genes to tumor cells and tumor metastases in 16 different types of cancer, including prostate, pancreatic, melanoma, breast cancer and head and neck cancer. The presence of the replacement genes dramatically improved the efficacy of conventional cancer therapy. That suggests that use of the P53 delivery system eventually would allow physicians to use a lower dose of therapies, achieving the same or enhanced therapeutic results but sharply diminishing the side effects so troublesome in many treatments.

Dr. Chang's nanoparticle delivery system is designed to reduce side effects in another way as well. When the job of reinstating a normal P53 suppressor gene is done, the nanoparticle - essentially a little fat droplet wrapped around the gene - simply melts away, unlike non-biodegradable delivery systems.

Clinical trials are now underway at the Mary Crowley Medical Research Center, affiliated with Baylor University at Dallas, under the direction of clinical trial principal investigator Dr. John Nemunaitis. The trial already has enrolled six patients with various cancers and anticipates a total of 14. Early results are promising, says Dr. Chang. In addition to evaluating the safety issues for which phase 1 trials are designed, investigators are seeing anti-tumor efficacy. Dr. Chang says she is hopeful that the gene therapy will become a first line treatment that will significantly reduce the probability of recurrent tumors.

Funding for this research includes that by the National Institutes of Health and by SynerGene Therapeutics, Inc.

Dr. Chang's presentation is called "Materializing the potential of nanomedicine via a tumor-targeting nanodelivery platform." It is part of a session on the intersection of nanotechnology and nanomedicine sponsored by the AAA.

####

For more information, please click here

Contacts:
Sylvia Wrobel

770-722-0155

Copyright © Federation of American Societies for Experimental Biology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project