Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A matter of density, not quantity

Abstract:
A matter of density, not quantity
Published: Friday, July 10, 2009 - 08:42 in Biology & Nature

Infections of wounds, pneumonia, etc. in hospitals in particular are often caused by bacteria called Pseudomonas aeruginosa. Once they reach a certain density, colonies of Pseudomonas aeruginosa produce virulence factors and can enter into a slimy state, a biofilm, which prevents antibiotics from penetrating. The process of quorum sensing, which cells use to "sense" cell density, is triggered when the concentration of certain signaling compounds generated by the bacteria reaches a threshold level. A team working with Rustem F. Ismagilov at the University of Chicago has now demonstrated that the absolute number of cells is irrelevant; only the number of bacteria in a given volume plays a role. As the researchers report in the journal Angewandte Chemie, they were even able to trigger quorum-sensing processes in single cells when these were confined in extremely small volumes. The term, quorum sensing, is derived from the Latin quorum; in politics, this is the number of votes that must be cast for an election or referendum to be valid. In biology, quorum sensing is defined as a process by which cells are able to detect the accumulation of a released signal and then change their behavior when the signal concentration exceeds a threshold level. Traditionally, quorum sensing is thought to help microorganisms to coordinate processes that would be inefficient in single cells, such as the formation of biofilms. Quorum sensing can also prevent too many bacteria from colonizing too small an area. However, the work of Ismagilov's team has shown that quorum sensing is also activated by a single cell if the cell finds itself in an extremely enclosed space, which raises questions as to how quorum-sensing-regulated processes are relevant both to large colonies of cells and to single cells in confined spaces.

A matter of density, not quantity

Chicago, IL | Posted on July 11th, 2009

In order to investigate this phenomenon, two different approaches can be taken: either seed a macroscopic volume with bacteria and wait for them to reach the required population through cell division, or enclose a few cells in an extremely tiny volume. The necessary signaling compounds can also become sufficiently concentrated by this route because the released signals cannot diffuse far away from the cell but instead accumulate around the cell. "In the past, the first strategy has dominated. This has led to the general view that quorum sensing is a process to coordinate the behavior of large groups of cells," says Ismagilov. "This overlooks the possibility that small groups of cells could also initiate quorum sensing if they are confined to a sufficiently small volume. The quorum-sensing metabolic processes are relevant to a number of cellular functions, including the growth of small numbers of cells at the early stages of biofilm formation or the early stages of an infection."

By using a microfluidic experimental array, the team was able to isolate droplets with a volume of about 100 femtoliters (100 quadrillionths of a liter), each containing only one or very few cells of Pseudomonas aeruginosa. Even with these extremely low cell counts, the researchers were able to observe that quorum sensing was triggered in many cases. "This unambiguously refutes the notion that millions of cells are required for quorum sensing," says Ismagilov.

####

For more information, please click here

Copyright © Wiley-Blackwell

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project