Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Simple Tea Creates Nano Gold Particles for Fighting Cancer

July 16th, 2009

Simple Tea Creates Nano Gold Particles for Fighting Cancer

Abstract:
Scientists have discovered a way to create cancer-fighting nanoparticles using nothing but gold salts and a cup of Darjeeling tea, according to a paper published in the Journal of Materials Chemistry.

Nanoparticles are particles much smaller than those commonly used in chemical or industrial applications, small enough that they can pass through cell membranes designed to keep foreign particles out. Because even widely studied elements and compounds act drastically different on the nano scale, nanotechnology is a burgeoning area of scientific research.

Most nanoparticles are manufactured during intensive industrial processes involving toxic chemicals and byproducts. Recently, however, researchers at the University of Missouri-Columbia discovered a process for producing nanoparticles by adding gold salts to a soybean-water mixture. Naturally occurring soy phytochemicals interact with the salts to produce stable gold nanoparticles, with no toxic byproducts.

"Our new process only takes what nature has made available to us and uses that to produce a technology that has already proven to have far-reaching impacts in technology and medicine," researcher Kattesh Katti said.

Researchers then repeated the same procedure with Darjeeling tea instead of soy, and found that once again, phytochemicals naturally found in the tea transformed the salts into pure, nano-scale particles of gold. Furthermore, the phytochemicals bind to the outside of the gold particles. This means that the microscopic particles could be injected into tumor cells, carrying cancer-fighting tea compounds directly to where they could provide the most benefit.

Source:
naturalnews.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanomedicine

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Discoveries

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024

Announcements

Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Finding quantum order in chaos May 17th, 2024

Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project