Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New study shows possibilities and dangers of nanotechnology

Los Alamos National Laboratory toxicologist Jun Gao, a co-author in the study, works in his laboratory. Courtesy of Los Alamos National Laboratory.
Los Alamos National Laboratory toxicologist Jun Gao, a co-author in the study, works in his laboratory. Courtesy of Los Alamos National Laboratory.

Abstract:
A tiny change in a tiny particle can mean the difference between treatment and toxicity, federal researchers found in the first observations of its kind.

By Elizabeth Bahm

New study shows possibilities and dangers of nanotechnology

Chicago, IL | Posted on April 12th, 2010

Researchers at the Los Alamos National Laboratory in New Mexico originally set out to study the interactions of carbon fullerenes - soccer-ball shaped molecules more commonly known as "buckyballs" - and cell membranes, said Rashi Iyer, a toxicologist at Los Alamos and principal research lead on the study, which was recently published in the journal Toxicology and Applied Pharmacology. As research progressed, she said that she and her colleagues began to observe an unexpected reaction that could either be dangerous or desirable.

Researchers found that exposure to a certain type of fullerene known as the "tris" configuration, referring to a certain configuration of molecular branches on the nanoparticle, produced a toxic reaction in human tissue.

Iyer said that cells from skin and lungs were among those studied, since those would be likely points of exposure to nanoparticles. Cells exposed to the tris fullerenes went into a state that could be described as suspended animation, she said. Cells' normal life cycle halted, meaning that they stopped growing, dividing and dying.

Typically, this effect would pose a risk to human organs by inhibiting normal development or immune responses. The same effect could also delay the onset of degenerative diseases such as Alzheimer's or prevent the spread of cancerous cells, giving doctors more time to treat abnormal cells, said the press release.

Iyer noted that the discovery of the senescence effect highlighted the importance of identifying health risks as nanoscience continues to develop. Studies like this can "guide material science," she said, demonstrating, in this case, that application matters when dealing with particles that may have a toxic potential. In a targeted scenario, this particle could lead to new medical treatments. If it had been inadvertently employed in a commercial product, there could be a health crisis.

Currently, nanomaterials face few federal regulations. Lynn Bergeson, a Washington, D.C. lawyer who counsels companies on nanotechnology innovation, said that it is a misconception that there are no regulations - while no laws address nanotechnology alone, many nanomaterials do fall under broader rules such as sections of the Environmental Protection Agency's Toxic Substances Control Act. "The EPA is doing a ton of work on nanoscale materials," said Bergeson, and there are several new rules on the horizon.

Iyer said that she thinks that regulations have been slow to appear because agencies "don't want to press the panic button" on a growing field with the potential to address many day-to-day problems.

"[Nanomaterials] need to be exploited for what they can offer us," said Iyer, "but we need to be cautious."

To that end, she said that her future research will entail efforts to broadly classify nanomaterials and assess their risks. With researchers in 40 countries creating new nanoparticles every day, she said that it would be difficult to assess each particle individually. By using physical and chemical characteristics to classify particles, scientists will be able to better predict responses to particles and the effects of modifying them.

Bergeson said that regulatory agencies face "a steep learning curve" in assessing the risks and benefits of nanotechnology. "The EPA is doing, I think, a very good job in obtaining information," she said, adding that there is a "steady increase in the sophistication and work devoted by regulatory agencies" to nanomaterials.

Establishing standards, said Iyer, "should be the universal effort" in nanomaterials research.

####

For more information, please click here

Contacts:
Chicago Newsroom
105 W. Adams St., Suite 200 Chicago, IL 60603

News Desk
(312) 503-4100
(312) 503-4200
(312) 503-4040 (Fax)

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Preparing for Nano

Disruptive by Design: Nano Now February 1st, 2019

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project