Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technology platform for molecule-based electronics

Abstract:
Researchers at the Nano-Science Center at the University of Copenhagen have developed a new nano-technology platform for the development of molecule-based electronic components using the wonder material graphene. At the same time, they have solved a problem that has challenged researchers from around world for ten years.

New technology platform for molecule-based electronics

Copenhagen, Denmark | Posted on February 9th, 2012

Since its discovery in 2004, graphene has been called a wonder material, in part because it is 200 times stronger than steel, a good electrical conductor and is just a single atom layer thick. With these properties, there are sky-high expectations for what graphene can be used for. That is why researchers around the world are working on developing methods to make and modify graphene. In a recently published article in the journal Advanced Materials, researchers in nano-chemistry at the Department of Chemistry describe how they are among the first in the world to be able to chemically produce large flakes of graphene.

- Using chemical and physical processes, that we have been working to develop in recent years, we are now able to produce such large flakes of graphene that we can use the flakes as components in an entirely new technology platform within molecule-based electronics, says nano-chemist Kasper Nørgaard, who along with his Danish and Chinese colleagues in the Danish-Chinese Center for Molecular Nano-Electronics at the Nano-Science Center, is behind the new platform as well as the solution to ten year old problem.

More than 10 years ago when it was being proclaimed that nanotechology could revolutionise computer technology, it was in part because they imagined that the development of molecular electronics was just around the corner. Molecular electronics involves replacing traditional electrical components with molecules, creating tiny electronic circuits for use in, for example, computers and data storage. This has proven to be more challenging than anticipated, in part because the components short-circuited when the molecules were contacted with electrodes and were therefore unable to create a workable circuit. Graphene is the solution to the problem.

We can now place one of our graphene flakes on top of the molecules, protecting the system from short circuits. That is how we developed a new technology platform for use in the development of new electronics based on molecules, says Kasper Nørgaard, who explains that in the Danish-Chinese collaboration, they are trying to use molecules with different properties in the platform, for example, molecules that can alternate between being conductive and non-conductive. This paves the way for the electronics of the future in areas such as memory technology, ultra-thin displays and solar cells.

####

About University of Copenhagen
Nano-Science Center is a cross faculty initiative between the Faculty of Natural Sciences and the Faculty of Health - two faculties that total 10.000 students and around 2850 full-time employees.

In September 2001 the Center was inaugurated as a joint venture between the Niels Bohr Institute and the Department of Chemistry at the University of Copenhagen.

The Center has continuously developed its area of research, and today we are working closely together with the Institute of Molecular Biology and the Department of Pharmacology at the Faculty of Health.

The Center was the first in Denmark to introduce a full Bachelor- and Master's Education in Nanoscience. Today the center has more than 250 students of Nanoscience who are primarily educated to obtain jobs in private companies.

In total 100 scientists, Post docs and PhD students are working at the Center. Nano-Science Center has since the inauguration in 2001 received above 70 million € overall in external funding pledges from both private and public funding - among others from the EU's Framework Programs, Nano-Science Center coordinats the 7th Framework Program SINGLE. With a 16 million € elite grant from The Danish Ministry of Science, Technology and Innovation Synthetic biology was established is a new research area at Nano-Science Center in 2009. Nano-Science Center also houses two basic research centres: Center for Molecular Movies and Danish-Chinese Center for Molecular Nano-Electronics .

For more information, please click here

Contacts:
Kasper Nørgaard

Mobil: +45 29176481

Rikke Bøyesen

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to article:

Related News Press

News and information

New method in the fight against forever chemicals September 13th, 2024

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Energy transmission in quantum field theory requires information September 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Announcements

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

New method in the fight against forever chemicals September 13th, 2024

Energy

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Solar/Photovoltaic

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project