Home > Press > Gas Detecting Nanosensors Synthesized through Polymerization of Pyrrole
Abstract:
Naader Alizadeh and Sajjad Pirsa, researchers from Tarbiat Modarres University in Tehran, managed to fabricate nanosensors for pollutant gas leak detection through polymerization of pyrrole.
Formation of nanostructured polymers over the nanosensor surface increases its interfacial area with the analyte gas so that detection at ultra low concentration levels is enabled. The research was aimed at synthesis of accurate sensors for identifying pollutant or toxic gases whose detection and analysis are of interest for particular purposes. Accordingly, the mentioned researchers prepared anion-doped polypyrrole samples by adoption of both the solvent and vapor phase polymerization techniques.
Based on the obtained results, the polymer films synthesized within the solvent phase exhibit higher electrical conductance and consequently allow creation of more sensitive and high-resolution gas detecting sensor devices.
"We analyzed the FT-IR spectrums for the synthesized polymers to conclude that solfunated compounds have been embedded well within the polymer matrices. Utilization of conducting nanostructured polymers as well as choice of a suitable anion dopant type are among the key features of the research that has led to the accurate nanosensor which maintains favorable performance at low temperatures and offers a conveniently short response time," Sajjad Pirsa pointed out.
The technical details of this research work can be found in Sensors and Actuators B: Chemical, volume 168, 2012, pages 303 to 309.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||