Home > Press > Carbon Nanotubes Able to Increase Sensitivity of Nanosensors
Abstract:
Researchers of Tehran University succeeded in increasing the sensitivity of tin dioxide nanosensor up to less than 0.3 ppm by synthesizing multi-walled carbon nanotube/tin dioxide nanocomposite.
In this research, multi-walled carbon nanotubes were used in order to improve the properties of semiconductor sensors of volatile organic compounds.
"In this research, nanocomposites consisted of functionalized carbon nanotubes and tin dioxide nanoparticles were synthesized through sonochemical and chemical vapor deposition (CVD) methods," Sadeq Ahmadnia Feyzabad, one of the researchers of the plan, explained.
The production of nanoparticles with diameter less than 6 nm is one of the advantages of the chemical deposition method used in this research. It causes the nanosensor made of such nanoparticles to have a very high sensitivity. Recent studies show that the reduction in the diameter of SnO2 nanoparticles to less than 6 nm significantly increases the sensitivity of the sensor made of these particles.
"One of the most important applications of these nanosensors is in medical fields. Normal or common or uncommon physiological processes in human's body can emit gases in expiration. Therefore, the combination of expiration changes. Internal illnesses are usually diagnosed by carrying out various tests such as blood test or through biopsy from the desired tissue. In addition to being time-consuming and its side effects, the diagnosis can be observed after the progress of the illness in the body," Ahmadnia Feyzabad said.
"However, respiration analysis can help the diagnosis of the illness more quickly and when the number of the damaged cells is little. Lung cancer, breast cancer, and diabetes are among the illnesses that can be diagnosed through respiration analysis."
Results of the research have been published on 20 May 2012 in Sensors and Actuators B: Chemical, vol. 166-167, pp. 150-155.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |