MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pills of the future: nanoparticles - Researchers design drug-carrying nanoparticles that can be taken orally

GRAPHIC: Christine Daniloff
GRAPHIC: Christine Daniloff

Abstract:
Drugs delivered by nanoparticles hold promise for targeted treatment of many diseases, including cancer. However, the particles have to be injected into patients, which has limited their usefulness so far.

Pills of the future: nanoparticles - Researchers design drug-carrying nanoparticles that can be taken orally

Cambridge, MA | Posted on November 27th, 2013

Now, researchers from MIT and Brigham and Women's Hospital (BWH) have developed a new type of nanoparticle that can be delivered orally and absorbed through the digestive tract, allowing patients to simply take a pill instead of receiving injections.

In a paper appearing in the Nov. 27 online edition of Science Translational Medicine, the researchers used the particles to demonstrate oral delivery of insulin in mice, but they say the particles could be used to carry any kind of drug that can be encapsulated in a nanoparticle. The new nanoparticles are coated with antibodies that act as a key to unlock receptors found on the surfaces of cells that line the intestine, allowing the nanoparticles to break through the intestinal walls and enter the bloodstream.

This type of drug delivery could be especially useful in developing new treatments for conditions such as high cholesterol or arthritis. Patients with those diseases would be much more likely to take pills regularly than to make frequent visits to a doctor's office to receive nanoparticle injections, say the researchers.

"If you were a patient and you had a choice, there's just no question: Patients would always prefer drugs they can take orally," says Robert Langer, the David H. Koch Institute Professor at MIT, a member of MIT's Koch Institute for Integrative Cancer Research, and an author of the Science Translational Medicine paper.

Lead authors of the paper are former MIT grad student Eric Pridgen and former BWH postdoc Frank Alexis, and the senior author is Omid Farokhzad, director of the Laboratory of Nanomedicine and Biomaterials at BWH. Other authors are Timothy Kuo, a gastroenterologist at BWH; Etgar Levy-Nissenbaum, a former BWH postdoc; Rohit Karnik, an MIT associate professor of mechanical engineering; and Richard Blumberg, co-director of BWH's Biomedical Research Institute.

No more injections

Several types of nanoparticles carrying chemotherapy drugs or short interfering RNA, which can turn off selected genes, are now in clinical trials to treat cancer and other diseases. These particles exploit the fact that tumors and other diseased tissues are surrounded by leaky blood vessels. After the particles are intravenously injected into patients, they seep through those leaky vessels and release their payload at the tumor site.

For nanoparticles to be taken orally, they need to be able to get through the intestinal lining, which is made of a layer of epithelial cells that join together to form impenetrable barriers called tight junctions.

"The key challenge is how to make a nanoparticle get through this barrier of cells. Whenever cells want to form a barrier, they make these attachments from cell to cell, analogous to a brick wall where the bricks are the cells and the mortar is the attachments, and nothing can penetrate that wall," Farokhzad says.

Researchers have previously tried to break through this wall by temporarily disrupting the tight junctions, allowing drugs through. However, this approach can have unwanted side effects because when the barriers are broken, harmful bacteria can also get through.

To build nanoparticles that can selectively break through the barrier, the researchers took advantage of previous work that revealed how babies absorb antibodies from their mothers' milk, boosting their own immune defenses. Those antibodies grab onto a cell surface receptor called the FcRN, granting them access through the cells of the intestinal lining into adjacent blood vessels.

The researchers coated their nanoparticles with Fc proteins — the part of the antibody that binds to the FcRN receptor, which is also found in adult intestinal cells. The nanoparticles, made of a biocompatible polymer called PLA-PEG, can carry a large drug payload, such as insulin, in their core.

After the particles are ingested, the Fc proteins grab on to the FcRN in the intestinal lining and gain entry, bringing the entire nanoparticle along with them.

"It illustrates a very general concept where we can use these receptors to traffic nanoparticles that could contain pretty much anything. Any molecule that has difficulty crossing the barrier could be loaded in the nanoparticle and trafficked across," Karnik says.

Breaking through barriers

In this study, the researchers demonstrated oral delivery of insulin in mice. Nanoparticles coated with Fc proteins reached the bloodstream 11-fold more efficiently than equivalent nanoparticles without the coating. Furthermore, the amount of insulin delivered was large enough to lower the mice's blood sugar levels.

The researchers now hope to apply the same principles to designing nanoparticles that can cross other barriers, such as the blood-brain barrier, which prevents many drugs from reaching the brain.

"If you can penetrate the mucosa in the intestine, maybe next you can penetrate the mucosa in the lungs, maybe the blood-brain barrier, maybe the placental barrier," Farokhzad says.

They are also working on optimizing drug release from the nanoparticles in preparation for further animal tests, either with insulin or other drugs.

The research was funded by a Koch-Prostate Cancer Foundation Award in Nanotherapeutics; the National Cancer Institute Center of Cancer Nanotechnology Excellence at MIT-Harvard; a National Heart, Lung, and Blood Institute Program of Excellence in Nanotechnology Award; and the National Institute of Biomedical Imaging and Bioengineering.

Written by Anne Trafton, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell
s_mcd@mit.edu
617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project