Home > Press > New Method for Production of Stable Antibacterial Fabrics without Color Change
Abstract:
Iranian researchers presented a new method for the production of highly stable antibacterial fabrics without any change in their color.
Antibacterial fabrics are usually produced by using silver nanoparticles. This method changes the color of the fabrics by creating brownish yellow shade in their structure. The aim of the research was to produce fabrics with high and stable antibacterial properties without changing the color. Zinc oxide/silicon dioxide nanocomposite was used in the structure of the fabric coating to obtain the goal.
In this research, cotton fabrics were produced with antibacterial properties by synthesizing and loading of zinc oxide/silicon dioxide (SiO2) nanocomposite on it. In this research, nanoparticles were synthesized through in-situ process by using two different methods on the structure of cotton fabrics. In one of the methods, zinc oxide nanoparticles were firstly synthesized in silicon dioxide solution, and the solution was next coated on the cotton fabrics. In the second method, the cotton fabrics were firstly coated with silicon dioxide and then zinc oxide nanoparticles were coated on its structure.
Results obtained from investigating cotton fabrics coated through the both methods confirmed that no bacteria have grown on the fabrics. However, the fabrics produced through the first method (synthesis of nanoparticles and coating of the fabric) showed larger diameter of the bacteria-free area due to the spherical shape and stability of the nanoparticles. Thermal tests also showed that the samples produced through the first method contain the maximum amount of zinc oxide while they have the lowest primary degradation temperature.
Results of the research have been published in Applied Surface Science, vol. 320, issue 1, 2014, pp. 429-434.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Textiles/Clothing
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022
Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |