Home > Press > A straightforward, rapid and continuous method to protect MOF nanocrystals against water
Abstract:
An article in Advanced Materials magazine presents a one-step, alternative, rapid, and scalable spray-drying (SD) synthesis of Metal-Organic Framework (MOF) nanocrystals coated with organic polymers (MOF@polymer composites) with enhanced hydrolytic stabilities. This method, which should enable molecular fabrication of various functional composites for a wide array of industrial applications, has been described by the Supramolecular NanoChemistry & Materials Group led by ICREA Research Prof Daniel Maspoch.
Many Metal-Organic Frameworks are water labile, including the iconic Hong-Kong University of Science and Technology-1 (HKUST-1), which is very promising for many industrial applications. In an article published in Advanced Materials magazine and signed by RyC researcher Inhar Imaz and ICREA Research Prof Dr Daniel Maspoch, researchers from the Institut Catalŕ de Nanocičncia i Nanotecnologia (ICN2) belonging to the Supramolecular NanoChemistry & Materials Group have reported that spray-drying encapsulation of nanocrystals of HKUST-1 into polystyrene microspheres is a straightforward, rapid and continuous method to protect the compound against liquid water and water vapours. Their method does not require any filtration or purification steps, since the composites are obtained directly in a dried, pure form.
Although encapsulation always implies a compromise between the protection offered by polystyrene and the pore accessibility of the encapsulated porous material, spray-drying has enabled the authors to fine-tune the HKUST-1/PS ratio to achieve optimal trade-off in their HKUST-1@PS composites: they are resistant to liquid or vapour water yet retain most of the excellent gas sorption capacity of HKUST-1. In these composites, the polymer protects the embedded MOF crystals against water molecules, without substantially decreasing their initial sorption capacity, and increases their water resistance in terms of porosity properties.
As in Metal-Organic Framework (MOF) mix matrix membranes, the permeability of the organic polymer in the composite should be one of the key factors to understand and enhance the gas and vapour transport towards the embedded MOF crystals. Here, for example, further experimentation aimed to study the water uptake kinetics is currently underway. Nevertheless, this method should enable molecular fabrication of various functional composites, based on the ever-expanding pool of MOFs and organic polymers, for a wide array of industrial applications such as CO2 capture from flue gas streams, heat pumps, or adsorption chillers.
####
For more information, please click here
Contacts:
Alicia Labian
alicia.labian@icn.cat
Copyright © ICN2
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |