Home > Press > Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way
![]() |
Abstract:
Creating entangled photons is part of the work quantum computing researchers perform in their labs. But for the past 30 years, scientists have been slowed down and frustrated by the large, often finicky machines they've had to use to generate them.
Now, a University of Waterloo researcher has invented a device - so small it fits into your hand - that can do the job. And far from being a fussy, difficult machine to operate, the Waterloo device can be tossed around the room - and still work.
A simpler, more efficient way to produce photons
Rolf Horn, a postdoctoral fellow at Waterloo's Institute for Quantum Computing (IQC), invented the device that will be brought to market soon so scientists around the world can use it in their labs. This new device advances quantum research by providing a simpler, more efficient way of producing entangled photons.
"This device is inspirational because it will accelerate quantum inventions and commercialization at IQC and around the world," says Raymond Laflamme, executive director at IQC and mentor to Horn. "We're at the beginning of an era, for IQC and society as a whole, as we start to see the germination of quantum innovations that are ripe for commercialization. We're very proud that all of the work to develop this device was done at IQC."
Waterloo device will save months of time
Thomas Jennewein, an associate professor at IQC who contributed his expertise on entangled photons to the development of the device, said there are hundreds of quantum research groups that could benefit from the invention. "Rolf's pre-aligned, robust, and significantly smaller device fixes a huge flaw in the process of producing entangled photons for quantum research, which will save months of time and work," says Jennewein.
The photons produced by the device are also extremely fragile which, in quantum terms, makes them very secure. If someone attempts to measure one photon, the pair of photons becomes uncorrelated and the user can tell there has been interference. This is a considerable improvement to current information security where keys used to protect data, such as passwords, are becoming easier to crack and users don't know their information is being looked at until it's too late.
Device could improve quantum information security
"Nothing is 100 per cent secure but this invention could improve security dramatically from anything that's available today," says Horn. "Pictures and other data could be encrypted with keys created by this quantum source. You would then be notified if someone tried to look at these keys, and you could stop sending sensitive information immediately."
Assisted by the Waterloo Commercialization Office (WatCo), Horn and his team received a Natural Sciences and Engineering Research Council of Canada (NSERC) Idea to Innovation Grant allowing the team to work with industry partners to build the hardware, optimize the device's system, and prepare the invention for commercialization.
####
For more information, please click here
Contacts:
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
+1 519 888 4567
Copyright © University of Waterloo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
New chip ramps up AI computing efficiency August 19th, 2022
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Quantum Computing
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |