MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Record high sensitive Graphene Hall sensors

Abstract:
In the era of modern world, numerous types of magnetic field sensors are being used in different applications. The magnetic field sensors market has gained ample demand recently due to humongous increase in vehicle production, gaming consoles, consumer electronics industry, homeland security, healthcare, aerospace, the defense industry, etc. These magnetic field sensors are famously in demand for precise measurements of position, proximity and motion. The most popular types of magnetic field sensors are Hall Effect, magneto resistive and SQUID. According to recent market reports, the total shipment in the year 2013 for the magnetic field sensors was recorded to be 6.5 billion units. This figure is expected to reach up to 9.6 billion units by 2020. From business point of view, this market has earned $1.8 billion in 2014 and likely to reach up to $2.9 billion by year 2020. Out of these various types Hall Effect sensors are more cost effective, durable and can be handled with ease.

Record high sensitive Graphene Hall sensors

Cambridge, UK | Posted on May 21st, 2015

The most commonly used Hall Effect devices are fabricated with Silicon. The important figure of merits of Hall sensors are voltage and current - related sensitivities. These sensitivities depend on the device materials electronic properties such as charge carrier mobility and density. However, for futuristic advanced applications requires higher sensitivity Hall sensors. The other well-known materials are based on high purity III/V semiconductors like GaAs or InAs based heterostructures. Though lot of efforts has been gone in developing sensors using these materials, sensitivity values are restricted.

Now the researchers from Germany at RWTH University and AMO GmbH Aachen have fabricated ultra-high sensitive Hall Effect sensors using single layer graphene. The results are published in Applied Physics Letters. Graphene, two dimensional atomic form of carbon, is a potential candidate for highly-sensitive Hall sensors because of its very high carrier mobility at room temperature and very low carrier densities. These properties make graphene a material that can outperform all currently existing Hall sensor technologies.
Researchers have protected the graphene from ambient contaminations by encapsulating it with hexagonal boron nitride layers; another highly promising 2D insulating material. The fabricated devices show a voltage and current normalized sensitivity of up to 3 V/VT and 5700 V/AT, respectively. These values are more than one order of magnitude above the values achieved in Silicon based and a factor of two above the values achieved with the best III/V semiconductors Hall sensors in ambient conditions. In addition, these results are far better than the earlier reported graphene Hall sensors on Silicon oxide and Silicon carbide substrates.

This new sensitivity level will enable devices with higher precision, lower energy consumption with smaller dimensions. This work will show new light for using graphene in more commercial applications, as Hall sensors are integral part of many household appliances. The research work is supported by the EU Graphene Flagship project (Contract No. NECT-ICT-604391) and the ERC (GA-Nr. 280140).

Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Jan Dauber, Abhay A. Sagade, Martin Oellers, Kenji Watanabe, Takashi Taniguchi, Daniel Neumaier, and Christoph Stampfer. App. Phys. Lett. 106, 193501 (2015); doi: 10.1063/1.4919897.

####

For more information, please click here

Contacts:
Dr. Abhay Sagade
Dept. of Engineering,
University of Cambridge, UK.
aas_phy@aol.in

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project