MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Characterizing the forces that hold everything together: UMass Amherst physicists offer new open source calculations for molecular interactions

UMass Amherst physicists, with others, provide a new software tool and database to help materials designers with the difficult calculations needed to predict the magnitude of van der Waals interactions between anisotropic or directionally dependent bodies such as those illustrated, with long-range torques. Though small, these forces are dominant on the nanoscale.
CREDIT: UMass Amherst
UMass Amherst physicists, with others, provide a new software tool and database to help materials designers with the difficult calculations needed to predict the magnitude of van der Waals interactions between anisotropic or directionally dependent bodies such as those illustrated, with long-range torques. Though small, these forces are dominant on the nanoscale.

CREDIT: UMass Amherst

Abstract:
As electronic, medical and molecular-level biological devices grow smaller and smaller, approaching the nanometer scale, the chemical engineers and materials scientists devising them often struggle to predict the magnitude of molecular interactions on that scale and whether new combinations of materials will assemble and function as designed.

Characterizing the forces that hold everything together: UMass Amherst physicists offer new open source calculations for molecular interactions

Amherst. MA | Posted on September 23rd, 2015

This is because the physics of interactions at these scales is difficult, say physicists at the University of Massachusetts Amherst, who with colleagues elsewhere this week unveil a project known as Gecko Hamaker, a new computational and modeling software tool plus an open science database to aid those who design nano-scale materials.

In the cover story in today's issue of Langmuir, Adrian Parsegian, Gluckstern Chair in physics, physics doctoral student Jaime Hopkins and adjunct professor Rudolf Podgornik on the UMass Amherst team report calculations of van der Waals interactions between DNA, carbon nanotubes, proteins and various inorganic materials, with colleagues at Case Western Reserve University and the University of Missouri who make up the Gecko-Hamaker project team.

To oversimplify, van der Waals forces are the intermolecular attractions between atoms, molecules, surfaces, that control interactions at the molecular level. The Gecko Hamaker project makes available to its online users a large variety of calculations for nanometer-level interactions that help to predict molecular organization and evaluate whether new combinations of materials will actually stick together and work.

In this work supported by the U.S. Department of Energy, Parsegian and colleagues say their open-science software opens a whole range of insights into nano-scale interactions that materials scientists haven't been able to access before.

Parsegian explains, "Van der Waals forces are small, but dominant on the nanoscale. We have created a bridge between deep physics and the world of new materials. All miniaturization, all micro- and nano-designs are governed by these forces and interactions, as is behavior of biological macromolecules such as proteins and lipid membranes. These relationships define the stability of materials."

He adds, "People can try putting all kinds of new materials together. This new database and our calculations are going to be important to many different kinds of scientists interested in colloids, biomolecular engineering, those assembling molecular aggregates and working with virus-like nanoparticles, and to people working with membrane stability and stacking. It will be helpful in a broad range of other applications."

Podgornik adds, "They need to know whether different molecules will stick together or not. It's a complicated problem, so they try various tricks and different approaches." One important contribution of Gecko Hamaker is that it includes experimental observations seemingly unrelated to the problem of interactions that help to evaluate the magnitude of van der Waals forces.

Podgornik explains, "Our work is fundamentally different from other approaches, as we don't talk only about forces but also about torques. Our methodology allows us to address orientation, which is more difficult than simply describing van der Waals forces, because you have to add a lot more details to the calculations. It takes much more effort on the fundamental level to add in the orientational degrees of freedom."

He points out that their methods also allow Gecko Hamaker to address non-isotropic, or non-spherical and other complex molecular shapes. "Many molecules don't look like spheres, they look like rods. Certainly in that case, knowing only the forces isn't enough. You must calculate how torque works on orientation. We bring the deeper theory and microscopic understanding to the problem. Van der Waals interactions are known in simple cases, but we've taken on the most difficult ones."

Hopkins, the doctoral student, notes that as an open-science product, Gecko Hamaker's calculations and data are transparent to users, and user feedback improves its quality and ease of use, while also verifying the reproducibility of the science.

####

For more information, please click here

Contacts:
Janet Lathrop
jlathrop@admin.umass.edu
413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project