MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanobiosensors and photofunctional materials designed at ICN2 recognized by the PIONER Awards

Abstract:
The ceremony of the second edition of the PIONER Awards has been held today at the headquarters of the CERCA Institution in Barcelona. Five young people who have developed a doctoral thesis with industrial potential have awarded. Two of the awarded researchers developed their thesis in the Catalan Institute of Nanoscience and Nanotechnology (ICN2).

Nanobiosensors and photofunctional materials designed at ICN2 recognized by the PIONER Awards

Barcelona, Spain | Posted on December 21st, 2015

Developing a doctoral thesis is one of the first major challenges of the research career. In these early stages it is very important that researchers are aware that their results may have not only a great scientific value, but also commercial and industrial implications. For this reason, promoted by the Research Centers of Catalonia (CERCA), the CERCA Institution promotes the PIONER Awards in order to distinguish those researchers who have developed a doctoral thesis with a clear commercial potential.

The ceremony of the second edition of the PIONER Awards was held today at the headquarters of the CERCA Institution (Via Laietana, 2; Barcelona). Five young people who have developed their doctoral thesis within a CERCA center received the award for having initiated or strengthened a technology or product with industrial interest. Two of these awards have recognized the work of doctors who developed their doctoral thesis in the Catalan Institute of Nanoscience and Nanotechnology (ICN2).

The first awarded ICN2 doctoral thesis focuses on the development of optical biosensors for diagnosis and therapeutic monitoring of various diseases, such as allergy, celiac disease or cancer. The author of the thesis, entitled "Nanoplasmonic Biosensors for Clinical Diagnosis at the Point of Care" is Dr Maria Aznar Soler, who worked under the direction of Dr M. Carmen Estevez and CSIC researcher Prof Laura M . Lechuga, Group Leader of the ICN2 NanoBioSensors and Bioanalytical Applications (NanoB2A) Group.

The second ICN2 thesis applies encapsulation technologies to design intelligent materials with photochromic and thermochromic properties. It is entitled "Encapsulation of stimuli-responsive molecules for the preparation of photofunctional materials" and has been written by Dr. Nuria Vazquez, under the direction of CSIC researcher Prof Daniel Ruiz, Group Leader of the ICN2 Nanostructured Functional Materials (NanosFun), and Prof. Jordi Hernando, from the Chemistry Department at the Autonomous University of Barcelona (UAB).

The rest of the winners are Dr Michal Drozdzal, from the Computer Vision Centre (CVC); Dr Alessandro Franci, from the International Center for Numerical Methods in Engineering (CIMNE); and Dr Benjamí Oller Salvia, from the Institute for Research in Biomedicine (IRB Barcelona). The fact that two of five awards have been awarded to researches developed at ICN2 evidences the commercial potential of the work developed at this center.

####

For more information, please click here

Contacts:
Alex Argemi
Phone: +34 93 737 26 07
alex.argemi@icn.cat

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project