MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films

Iron impurities are easy to see in a bundle of carbon nanotubes viewed through a transmission electron microscope. Researchers at Rice University and the National University of Singapore are leading the charge to purify nanotubes for use in continuous, strong and conductive carbon nanotube fibers. (Credit: Complex Flows of Complex Fluids/Rice University)
Iron impurities are easy to see in a bundle of carbon nanotubes viewed through a transmission electron microscope. Researchers at Rice University and the National University of Singapore are leading the charge to purify nanotubes for use in continuous, strong and conductive carbon nanotube fibers. (Credit: Complex Flows of Complex Fluids/Rice University)

Abstract:
To make continuous, strong and conductive carbon nanotube fibers, it's best to start with long nanotubes, according to scientists at Rice University.

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films

Houston, TX | Posted on October 17th, 2017

The Rice lab of chemist and chemical engineer Matteo Pasquali, which demonstrated its pioneering method to spin carbon nanotube into fibers in 2013, has advanced the art of making nanotube-based materials with two new papers in the American Chemical Society's ACS Applied Materials and Interfaces.

The first paper characterized 19 batches of nanotubes produced by as many manufacturers to determine which nanotube characteristics yield the most conductive and strongest fibers for use in large-scale aerospace, consumer electronics and textile applications.

The researchers determined the nanotubes' aspect ratio -- length versus width -- is a critical factor, as is the overall purity of the batch. They found the tubes' diameters, number of walls and crystalline quality are not as important to the product properties.

Pasquali said that while the aspect ratio of nanotubes was known to have an influence on fiber properties, this is the first systematic work to establish the relationship across a broad range of nanotube samples. Researchers found that longer nanotubes could be processed as well as shorter ones, and that mechanical strength and electrical conductivity increased in lockstep.

The best fibers had an average tensile strength of 2.4 gigapascals (GPa) and electrical conductivity of 8.5 megasiemens per meter, about 15 percent of the conductivity of copper. Increasing nanotube length during synthesis will provide a path toward further property improvements, Pasquali said.

The second paper focused on purifying fibers produced by the floating catalyst method for use in films and aerogels. This process is fast, efficient and cost-effective on a medium scale and can yield the direct spinning of high-quality nanotube fibers; however, it leaves behind impurities, including metallic catalyst particles and bits of leftover carbon, allows less control of fiber structure and limits opportunities to scale up, Pasquali said.

"That's where these two papers converge," he said. "There are basically two ways to make nanotube fibers. In one, you make the nanotubes and then you spin them into fibers, which is what we’ve developed at Rice. In the other, developed at the University of Cambridge, you make nanotubes in a reactor and tune the reactor such that, at the end, you can pull the nanotubes out directly as fibers.

"It's clear those direct-spun fibers include longer nanotubes, so there's an interest in getting the tubes included in those fibers as a source of material for our spinning method," Pasquali said. "This work is a first step toward that goal."

The reactor process developed a decade ago by materials scientist Alan Windle at the University of Cambridge produces the requisite long nanotubes and fibers in one step, but the fibers must be purified, Pasquali said. Researchers at Rice and the National University of Singapore (NUS) have developed a simple oxidative method to clean the fibers and make them usable for a broader range of applications.

The labs purified fiber samples in an oven, first burning out carbon impurities in air at 500 degrees Celsius (932 degrees Fahrenheit) and then immersing them in hydrochloric acid to dissolve iron catalyst impurities.

Impurities in the resulting fibers were reduced to 5 percent of the material, which made them soluble in acids. The researchers then used the nanotube solution to make conductive, transparent thin films.

"There is great potential for these disparate techniques to be combined to produce superior fibers and the technology scaled up for industrial use," said co-author Hai Minh Duong, an NUS assistant professor of mechanical engineering. "The floating catalyst method can produce various types of nanotubes with good morphology control fairly quickly. The nanotube filaments can be collected directly from their aerogel formed in the reactor. These nanotube filaments can then be purified and twisted into fibers using the wetting technique developed by the Pasquali group."

Pasquali noted the collaboration between Rice and Singapore represents convergence of another kind. "This may well be the first time someone from the Cambridge fiber spinning line (Duong was a postdoctoral researcher in Windle’s lab) and the Rice fiber spinning line have converged," he said. "We're working together to try out materials made in the Cambridge process and adapting them to the Rice process."

Alumnus Dmitri Tsentalovich, currently an academic visitor at Rice, is lead author of the characterization paper. Co-authors are graduate students Robert Headrick and Colin Young, research scientist Francesca Mirri and alumni Junli Hao and Natnael Behabtu, all of Rice.

Thang Tran of Rice and NUS and Headrick are co-lead authors of the catalyst paper. Co-authors are graduate student Amram Bengio and research specialist Vida Jamali, both of Rice, and research scientist Sandar Myo and graduate student Hamed Khoshnevis, both of NUS.

The Air Force Office of Scientific Research, the Welch Foundation and NASA supported both projects. The characterization project received additional support from the Department of Energy. The catalyst project received additional support from the Temasek Laboratory in Singapore.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties:

Purification and Dissolution of Carbon Nanotube Fibers Spun from Floating Catalyst Method:

"Complex Flows of Complex Fluids" (Pasquali group):

Matteo Pasquali bio:

"Carbon-Based Nanoengineering Materials" (Duong lab):

Rice Department of Chemistry:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project