MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bio-inspired nano-catalyst guides chiral reactions

Abstract:
Many medicines are twisted molecules with two mirror image versions, but the body uses only one. Inspired by photosynthetic bacteria, a team at the University of Michigan built a catalyst that guides chemical reactions toward the right version of twisted molecules. It could lead to more efficient production of some medicines.

Bio-inspired nano-catalyst guides chiral reactions

Ann Arbor, MI | Posted on October 25th, 2019

The curl in drug molecules, a property that's known as chirality, helps them to interact with similarly curved molecules in human cells. The molecule with the opposite curve is inactive or, in the worst case can be very toxic. Yet chemical processes usually give us both versions of chiral molecules, or enantiomers, in equal amounts.

"Chiral catalysts today have been optimized to work in liquids that are expensive and environmentally unfriendly. These catalysts can produce left- or right-enantiomers almost exclusively, but when we want to carry reactions in water, they are destroyed," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering, who led the team that designed and tested the new catalyst.

It would be cheaper and safer to run reactions in water. The catalysts developed by Kotov's team can do this. They are assemblies of mineral nanoparticles, made chiefly from zinc oxide. They mimic nanoscale organs in bacteria, and they are at least 10 times better at selecting a particular version of a chiral molecule than earlier catalysts of this type.

"Our chiral selectivity is consistently above 20% while the previous reactions of similar type barely broke 1%," said Kotov. "Twenty percent may not seem like much, but already it is technologically valuable because it substantially reduces the cost of the intended product."

For instance, some medications--which currently contain equal amounts of the active and inactive enantiomers--could be produced more efficiently with these catalysts.

"Cost savings are already possible because the catalysts are inexpensive, stable and reusable. Replacing organic solvents with water also makes a large difference both for economics and the environment."

This is how the catalysts work: the gaps between the chiral nanoparticles within the 0.0001-millimeter "supraparticle" are twisted, so they prefer to host molecules with a similar curve. The nanoparticles catch light and transform it into electrical charges, which are passed to the molecules in the gaps.

The molecules use the energy to form a new bond. The molecules with the correct twists spend more time inside the supraparticle, so they end up producing more of the twisted products.

The team is exploring how to improve the chiral selectivity further, perhaps by using twisted light.

###

The study is published in the journal Nature Communications. It was funded by the U.S. National Science Foundation, National Natural Science Foundation of China, Department of Defense and Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Katherine McAlpine
kmca@umich.edu

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study: Single- and multi-component chiral supraparticles as modular enantioselective catalysts:

Nicholas Kotov:

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanomedicine

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Nanobiotechnology

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Research partnerships

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project