Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > In new step toward quantum tech, scientists synthesize 'bright' quantum bits: Innovative step by Northwestern, UChicago scientists could boost computing, sensing

Scientists have developed a way to synthesize tailor-made molecular qubits. Illustration courtesy of Daniel Laorenza, Northwestern University.
Scientists have developed a way to synthesize tailor-made molecular qubits. Illustration courtesy of Daniel Laorenza, Northwestern University.

Abstract:
With their ability to harness the strange powers of quantum mechanics, qubits are the basis for potentially world-changing technologies--like powerful new types of computers or ultra-precise sensors.

In new step toward quantum tech, scientists synthesize 'bright' quantum bits: Innovative step by Northwestern, UChicago scientists could boost computing, sensing

Evanston, IL | Posted on December 10th, 2020

Qubits (short for quantum bits) are often made of the same semiconducting materials as our everyday electronics. But an interdisciplinary team of chemists and physicists at Northwestern University and the University of Chicago has developed a new method to create tailor-made qubits: by chemically synthesizing molecules that encode quantum information into their magnetic, or "spin," states.

This new bottom-up approach could ultimately lead to quantum systems that have extraordinary flexibility and control, helping pave the way for next-generation quantum technology.

"Chemical synthesis enables atomistic control over qubit structure," said Danna Freedman, professor of chemistry at Northwestern's Weinberg College of Arts and Sciences. "Molecular chemistry creates a new paradigm for quantum information science." She led the research along with her colleague David Awschalom at the University of Chicago's Pritzker School of Molecular Engineering.

The results were published in the journal Science in November.

"This is a proof-of-concept of a powerful and scalable quantum technology," said Awschalom, the Liew Family Professor in Molecular Engineering. "We can harness the techniques of molecular design to create new atomic-scale systems for quantum information science. Bringing these two communities together will broaden interest and has the potential to enhance quantum sensing and computation."

Awschalom also is director of Q-NEXT, a Department of Energy National Quantum Information Science Research Center established in August and led by Argonne National Laboratory. Freedman, along with two other Northwestern faculty, is a member of the new center.

Qubits work by harnessing a phenomenon called superposition. While the classical bits used by conventional computers measure either 1 or 0, a qubit can be both 1 and 0 at the same time.

The team wanted to find a new bottom-up approach to develop molecules whose spin states can be used as qubits and can be readily interfaced with the outside world. To do so, they used organometallic chromium molecules to create a spin state that they could control with light and microwaves.

By exciting the molecules with precisely controlled laser pulses and measuring the light emitted, they could "read" the molecules' spin state after being placed in a superposition--a key requirement for using them in quantum technologies.

By varying just a few different atoms on these molecules through synthetic chemistry, they were also able to modify both their optical and magnetic properties, highlighting the promise for tailor-made molecular qubits.

"Over the last few decades, optically addressable spins in semiconductors have been shown to be extremely powerful for applications including quantum-enhanced sensing," Awschalom said. "Translating the physics of these systems into a molecular architecture opens a powerful toolbox of synthetic chemistry to enable novel functionality that we are only just beginning to explore."

"Our results open up a new area of synthetic chemistry," Freedman said. "We demonstrated that synthetic control of symmetry and bonding creates qubits that can be addressed in the same way as defects in semiconductors. Our bottom-up approach enables both functionalization of individual units as 'designer qubits' for target applications and the creation of arrays of readily controllable quantum states, offering the possibility of scalable quantum systems."

One potential application for these molecules could be quantum sensors that are designed to target specific molecules. Such sensors could find specific cells within the body, detect when food spoils or even spot dangerous chemicals.

This bottom-up approach could also help integrate quantum technologies with existing classical technologies.

"Some of the challenges facing quantum technologies might be able to be overcome with this very different bottom-up approach," said Sam Bayliss, a postdoctoral scholar in the Awschalom group and co-first author on the paper. "Using molecular systems in light-emitting diodes was a transformative shift; perhaps something similar could happen with molecular qubits."

Daniel Laorenza, a graduate student in Freedman's lab and co-first author, sees tremendous potential for chemical innovation in this space. "This chemically specific control over the environment around the qubit provides a valuable feature to integrate optically addressable molecular qubits into a wide range of environments," he said.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

@northwesternu

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper is titled "Optically addressable molecular spins for quantum information processing." Other authors on the paper include University of Chicago graduate students Peter Mintun and Berk Diler Kovos:

Related News Press

Quantum Physics

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

News and information

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Possible Futures

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Chip Technology

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Announcements

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project