MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Record-setting thermoelectric figure of merit achieved for metal oxides

The barium-cobalt oxide film (top right, approximately 1 cm2) being exposed to an open flame to generate voltage. (Photo: Hiromichi Ohta)

CREDIT
Hiromichi Ohta
The barium-cobalt oxide film (top right, approximately 1 cm2) being exposed to an open flame to generate voltage. (Photo: Hiromichi Ohta) CREDIT Hiromichi Ohta

Abstract:
Scientists at Hokkaido University have developed a layered cobalt oxide with a record-setting thermoelectric figure of merit, which can be used to enhance thermoelectric power generation.

Record-setting thermoelectric figure of merit achieved for metal oxides

Hokkaido, Japan | Posted on December 29th, 2020

Waste heat is a highly promising source of renewable energy; however, the efficiency of using heat to generate energy has historically been much lower than hydroelectric, wind or solar power. While there are a number of materials that can be used for the generation of energy from waste heat, they all suffer from various issues ranging from low stability to low efficiency. Nevertheless, the fact that a large number of industries generate copious amounts of waste heat have driven research into this field.

A team of scientists led by Professor Hiromichi Ohta at the Research Institute for Electronic Science (RIES), Hokkaido University, has recently developed a layered cobalt oxide with a record-setting thermoelectric figure of merit for metal oxides at room temperature. Their findings were published in the journal Journal of Materials Chemistry A.

Thermoelectric conversion is driven by the Seebeck effect: when there is a temperature difference across a conducting material, an electric current is generated. Historically, the efficiency of heat-to-electricity conversion of metal oxides was very low; however, metal oxide-based thermoelectric devices are highly desired due to their environmental compatibility. The thermoelectric conversion efficiency of a device depends on a key factor called the thermoelectric figure of merit (ZT).

Hiromichi Ohta's group has developed a layered cobalt oxide that exhibits a high ZT and is stable across a range of operating temperatures. Well-known sodium-cobalt oxide, where sodium and cobalt oxide layers alternate, shows a very low ZT of around 0.03, but the material developed by Ohta's group achieved a ZT of 0.11. The group replaced the sodium by other alkali or alkaline earth metals: calcium, strontium, and barium.

The layered barium-cobalt oxide material exhibited a record-setting ZT of 0.11 at room temperature. The increase in ZT is directly caused by the decreased thermal conductivity of barium. As the scientists hypothesized, the greater the atomic mass, the lower the thermal conductivity, resulting in higher ZT. This is due to the fact that heavier atoms suppress the vibrations in the cobalt oxide layers caused by heating. Further research is required to optimize the material's composition for higher efficacy and stability, as well as determining the most useful practical applications.

Hiromichi Ohta is the head of the Laboratory of Functional Thin Film Materials at the RIES, Hokkaido University. His areas of research include Thermoelectrics, Thermopower modulation, Optoelectronics and Iontronics.

####

For more information, please click here

Contacts:
Sohail Keegan Pinto
en-press@general.hokudai.ac.jp
81-117-062-185

@hokkaidouni

Copyright © Hokkaido University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project