Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases

Abstract:
•Nanobodies have been shown to inhibit the dysfunction of key proteins involved with various diseases such as rheumatoid arthritis, osteoarthritis, psoriasis, B-cell lymphoma, and breast cancer
•Understanding the structure of a nanobody helps to better understand its disease-fighting potential
•Typically, the protein structure is determined from solid samples. Researchers at NYUAD used a liquid state technique to determine protein structure.

NYUAD study maps nanobody structure, leading to new ways to potentially fight diseases

Abu Dhabi, UAE | Posted on July 4th, 2021

For the first time in the UAE, researchers at NYU Abu Dhabi have used nuclear magnetic resonance techniques to determine the structure of a specific nanobody, Nb23, potentially leading to a better understanding of how this small protein derived from an antibody type, found only in camelids (i.e camels, llamas, and alpacas) and sharks, can fight diseases ranging from rheumatoid arthritis, lupus and psoriasis to lymphoma and breast cancer.

In a new study, published in the journal Molecules, Visiting Professor of Chemistry Gennaro Esposito, and his collaborators, Mathias Percipalle and Yamanappa Hunashal, at the NYUAD Nuclear Magnetic Resonance (NMR) laboratory detail how they utilized NMR spectroscopy to determine the structure of the Nb23 nanobody in water.

This is unique because scientists typically determine protein structure from solid samples, namely from crystals using X-ray or from frozen solutions using electron microscopy. However, crystals are sometimes difficult to obtain, and, most significantly, proteins work in liquid state where their mobility and sometimes their shape differ from the solid state, especially for small species.

By using the NMR spectroscopy, the researchers can map the factors relevant for nanobody function, recognize the changes that occur when the nanobody binds to its target protein, and prevents, as in the case of Nb23, the formation of abnormal protein aggregation (amyloid) that leads to degenerative or functional diseases.

Researchers are eager to explore the potential of nanobodies over disease-fighting monoclonal antibodies, the laboratory-made proteins that mimic the immune system's ability to fight off harmful antigens such as viruses but are difficult to handle and conserve and often hardly penetrate solid tissues due to their size. Nanobodies, instead, are tenfold smaller in size than antibodies, offer more stability, strong binding affinity, good solubility and biocompatibility because of their natural origin, representing a promising alternative for therapeutic use.

"Our team is studying several nanobodies, including two in particular, Nb23 and Nb24, that bind to a key protein of the immune system called beta2-microglobulin and prevent its pathological transformation into fibrillar deposits such as those involved with degenerative or functional diseases, including Alzheimer's, Parkinson's and type-2 diabetes," said Esposito. "Elucidating the structure of Nb23 and other important nanobodies is a critical step in improving our understanding of how they can bind to target proteins and help prevent the onset of these diseases."

####

About NYU Abu Dhabi
NYU Abu Dhabi is the first comprehensive liberal arts and science campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly-selective liberal arts, engineering and science curriculum with a world center for advanced research and scholarship enabling its students to succeed in an increasingly interdependent world and advance cooperation and progress on humanity's shared challenges. NYU Abu Dhabi's high-achieving students have come from more than 115 nations and speak over 115 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

Contacts:
Adam Pockriss

917-596-5951

@nyuniversity

Copyright © NYU Abu Dhabi

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Cancer

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project