MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells

Ruthenium atoms supported on platinum are extremely active to produce hydrogen

CREDIT
HKUST
Ruthenium atoms supported on platinum are extremely active to produce hydrogen CREDIT HKUST

Abstract:
A group of researchers at the Hong Kong University of Science and Technology (HKUST) and Xiamen University has revealed new understandings of how surface ruthenium atoms can improve the hydrogen evolution and oxidation activities of platinum. This discovery opens a new venue for rational design of more advanced catalysts for electrolyzer and fuel cell applications.

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells

Hong Kong, China | Posted on August 13th, 2021

Hydrogen is a clean energy carrier that does not contain carbon. It is believed to play an essential role in our future sustainable society. Hydrogen can be produced from water via the hydrogen evolution reaction (HER) in an electrolyzer by using renewable energies, and consumed via a hydrogen oxidation reaction (HOR) in a fuel cell to generate electricity. Unfortunately, these two reactions are well-known kinetically sluggish in alkaline media, even on the most active platinum catalysts. The slow reaction rates limit the efficiencies of these two electrochemical devices and hinder their wide adoption. It has been known that the reaction rates of HER/HOR on platinum can be improved by surface modification or alloying with ruthenium. However, the mechanisms for this promotion have been under debate for over decades. Part of the reasons is a lack of direct observation of behaviors of hydrogen atoms on the surfaces of catalysts.

To reveal the enigma of high HER/HOR activities on platinum-ruthenium bimetallic catalysts, a research team led by Prof. Minhua Shao, Department of Chemical and Biological Engineering and Energy Institute at HKUST, recently applied the powerful surface-enhanced infrared absorption spectroscopy (SEIRAS) to directly monitor the binding strength of the important reaction intermediate, hydrogen atoms on various surfaces. Through the combined electrochemical, spectroscopic, and theoretical studies they confirmed the surface ruthenium atoms interacted with the sub-surface platinum is one order of magnitude more active than platinum, i.e., the ruthenium rather than platinum atoms are main active sites in this system.

“Previous works mainly used conventional electrochemical and characterization techniques, which cannot directly monitor the adsorption behavior of hydrogen reaction intermediates. In this work, we use the powerful surface-enhanced infrared absorption spectroscopy, which is among the very few techniques that can directly “see” surface hydrogen atoms, and provides us more straightforward information on how ruthenium improves the activity” said Prof. Shao. “This work rules out the most widespread theory that the bifunctional effect on the interface between platinum and ruthenium is the cause of increased activities, and opens new directions on future design of more advanced HER/HOR catalysts, which can consequently reduce the usage of precious metals in both water electrolyzers and hydrogen fuel cells.”

This work is part of the newly founded Collaborative Research Fund project led by Prof. Shao “Development of high-performance and long-life alkaline membrane fuel cells”, and constitutes an important subsection of fundamental research to this whole project. Following works on the development of practical and high-performance bimetallic platinum-ruthenium electrocatalysts based on these findings is in progress.

####

For more information, please click here

Contacts:
Johnny Tam
johnnytam@ust.hk
Office: 852-235-88556

Copyright © Hong Kong University of Science and Technology (HKUST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This study was recently published in Nature Catalysis entitled “The Role of Ruthenium in Improving the Kinetics of Hydrogen Oxidation and Evolution Reactions of Platinum”:

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project