Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers use breakthrough method to answer key question about electron states

X-ray transitions can be used to sense specific orbitals in lanthanide atoms on surfaces and map their electronic and spin configuration. In the figure, an atom of gadolinium (Gd) attached to a film of magnesium oxide (MgO) is hit by a x-ray.

CREDIT
IBS Center for Quantum Nanoscience
X-ray transitions can be used to sense specific orbitals in lanthanide atoms on surfaces and map their electronic and spin configuration. In the figure, an atom of gadolinium (Gd) attached to a film of magnesium oxide (MgO) is hit by a x-ray. CREDIT IBS Center for Quantum Nanoscience

Abstract:
Scientists are working hard to engineer the properties of nanostructures, such as atoms and molecules, to realize efficient logic devices that can operate at the fundamental scale of matter - the scale of atoms. To make “engineering” possible at that scale, researchers have to be able to look at the internal structure of an atom, the so-called orbital structure, where electrons are confined in a series of shells.

Researchers use breakthrough method to answer key question about electron states

Seoul, South Korea | Posted on September 24th, 2021

In a study published this week in ACS Nano, the research led by QNS achieved an unprecedented result: identifying how electrons are distributed among the orbitals of atoms and nanostructures. Using top-notch X-ray generators, called synchrotrons, located in Spain, Switzerland, and Korea, the team identified a method to distinguish the properties of their electrons depending on their orbital.

"We were not sure that we could actually have enough sensitivity to probe all these atomic orbitals individually in such tiny structures” says Prof. Fabio Donati, the primary investigator from QNS. “This result proved a new way to reveal the behavior of these atoms and possibly guide the engineering of their properties to realize future atomic-scale devices”.

For this study, the researchers focused on lanthanide elements - the additional row at the bottom of the periodic table. These elements are currently investigated as potential atomic-scale magnets to realize classical or quantum bits for future logic and memory storage devices. Being able to use them for this purpose could enable technology to operate at the smallest available scale, offering enormous potential in terms of miniaturization.

A unique characteristic of these elements is that their most important electrons, namely the ones providing the large part of the atom’s magnetization, are localized in specific orbitals (called 4f) that are hidden deep inside the atoms. Therefore, it is difficult to use an electric current to sense them, which could create challenges for their integration into electronic devices.

Scientists are trying to establish whether electrons from more external, and electrically accessible, orbitals can be used as a readout channel instead of the more hidden electrons. “We needed to find a technique that could measure the electrons in these atoms, literally orbital by orbital, to find out the way they cooperate and contribute to the atom magnetic properties” says Dr. Aparajita Singha of who started the research as a post doc at QNS and now leads a group at the Max Planck Institute for Solid State Research.

The experiment was performed using very low temperatures (-270 C) to keep the lanthanide atoms “frozen” on their supporting substrate, which is a film of magnesium oxide. It was necessary to use very high magnetic fields - 100,000 times stronger than the earth’s magnetic field - to magnetize the lanthanide atoms and measure the properties of their electrons. The researchers used the X-ray to hit electrons very close to the nucleus and excite them to the target orbitals that they wanted to sense. “Although this approach was known to work for crystals composed by a large collection of atoms, whether individual orbitals could be measured in isolated atoms was a big open question” stated Donati. “You can imagine how exciting it was to see the first data appearing on the screen during the measurements. Only then we realized that there was no theory ready to explain our results. There was still a lot of work to be done."

Compared to the data collection phase, which required only a few weeks of measurements, the analysis and the development of an interpretative model kept the scientists busy for several months. Using this combination of experiment end theory, the researchers could identify how the electrons were distributed among the atomic orbitals. “We believe that knowing the structure of these atoms, orbital by orbital, will provide novel directions to engineer the properties of future devices, such as quantum computers and ultra-dense magnetic hard drives” concluded Donati.

####

For more information, please click here

Contacts:
Michelle Randall
Institute for Basic Science Center for Quantum Nanoscience

Expert Contact

Fabio Donati
IBS Center for Quantum Nanoscience

Copyright © Institute for Basic Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Possible Futures

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Announcements

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project