Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Void-confinement effect of nanoreactor promotes heterogeneous catalysis

Figure 1. (a) synthesis process of the catalyst; (b) SEM image of Ni@HCS; (c, d) TEM images of Ni@HCS.

CREDIT
HU Zhi
Figure 1. (a) synthesis process of the catalyst; (b) SEM image of Ni@HCS; (c, d) TEM images of Ni@HCS. CREDIT HU Zhi

Abstract:
A research team from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences has recently obtained a catalyst composed of the hollow carbon sphere and inner Ni nanoparticles which displayed good performance when applied in the aqueous phase hydrogenation rearrangement tandem reaction of furfural (FAL), a typical aqueous phase reaction.

Void-confinement effect of nanoreactor promotes heterogeneous catalysis

Hefei, China | Posted on January 28th, 2022

They found that it can afford 100 % FAL conversion and 99% cyclopentanone selectivity at a mild condition (150 °C, 2 MPa H2, 4h).

In heterogeneous catalysis, the deactivation of catalysts caused by active metal loss, agglomeration, and sintering has always been the crux of limiting the development of supported metal catalysts, especially in the aqueous phase under high temperature. In addition, improving the selectivity of the target product in the reaction is also a big challenge in catalyst preparation.

Thanks to the shape-selective catalysis induced by the void-confinement effect of the hollow structure, the selectivity of to the target product is improved compared with active carbon supported catalysts.

More importantly, this hollow structure catalyst showed much better stability compared with active carbon supported catalysts as it can maintain its activity after ten cycle experiments. According to CHEN Chun, a member of the team, it's because the protective effect of hollow carbon spheres on active metals greatly reduced the loss of metals in the reaction process.

They have conducted more experiments to explained the phenomena. Inductively Coupled Plasma-Atomic Emission Spectrometry results show that the Ni content of has a tiny change after the reaction while the active carbon supported catalysts show over 60% metal loss during the reaction. In addition, the synthetic method is also applicable to other metal catalysts and other reactions.

This work has been published in Applied Catalysis B: Environmental and it was supported by the National Natural Science Foundation of China.

####

For more information, please click here

Contacts:
Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences

Office: 86-551-655-91206

Copyright © Hefei Institutes of Physical Science, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Possible Futures

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Announcements

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project