MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution

CdS spheres and CdS nanorods with different lengths were constructed by hydrothermal method and solvothermal process with varied reaction time, respectively. The medium-length CdS nanorods subjected to ultrasonic stimulation exhibits excellent piezocatalytic H2 evolution performance due to the strong piezoelectric potential and benign mechanical strain collecting ability.

CREDIT
Chinese Journal of Catalysis
CdS spheres and CdS nanorods with different lengths were constructed by hydrothermal method and solvothermal process with varied reaction time, respectively. The medium-length CdS nanorods subjected to ultrasonic stimulation exhibits excellent piezocatalytic H2 evolution performance due to the strong piezoelectric potential and benign mechanical strain collecting ability. CREDIT Chinese Journal of Catalysis

Abstract:
Damaged ecosystems are sending signals of global climate crisis and energy scarcity to wake human beings up to respond by reducing excessive carbon dioxide and producing green sustainable energy. The enormous potential is maintained by piezocatalysis, the absence of daylight constraints and abundant energy sources, including vibration, water flow, friction, tidal power, water droplets and human movement. Piezocatalytic hydrogen evolution has emerged as a promising direction for the collection and utilization of mechanical energy and the efficient generation of sustainable energy throughout the day.

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution

Dalian, China | Posted on May 13th, 2022

Piezoelectric materials for catalysis are emerging and enriching, including perovskite-type materials (e.g. BaTiO3, ZnSnO3, CH3NH3PbI3), wurtzite-type materials (e.g. ZnO, ZnS and CdS), two-dimensional (2D) materials (e.g. MoS2, Bi2WO6 and 2D black phosphorus) and organic polymer (e.g. poly(vinylidene fluoride) (PVDF), polydimethylsiloxane (PDMS) and graphite carbon nitride). Some wurtzite crystal materials with non-centrosymmetric (NCS) structure have been found to be promising piezocatalytic materials to alleviate the bottleneck of photocatalytic efficiency.

The typical NCS wurtzite structured CdS with a space group of P63mc and point group of 6mm shows piezoelectric effect, which is expected to effectively speed up the separation of carriers and increase the overall catalytic efficiency through piezoelectric polarization field. Unfortunately, the high-efficiency piezocatalytic hydrogen production of CdS-based materials has remained challenging so far, which is limited to the rapid recombination and deactivation of photogenerated carriers.

Recently, a research team led by Prof. Hongwei Huang from China University of Geosciences (Beijing) reported that two types of CdS nanostructures, namely CdS nanorods and CdS nanospheres, were prepared to probe the above-mentioned issues. Under ultrasonic vibration, CdS nanorods afforded a superior piezocatalytic H2 evolution rate of 175 μmol g-1 h-1 in the absence of any co-catalyst, which is nearly 2.8 times that of CdS nanospheres. The higher piezocatalytic activity of CdS nanorods is derived from their larger piezoelectric coefficient and stronger mechanical energy harvesting capability, affording a greater piezoelectric potential and more efficient separation and transfer of intrinsic charge carriers, as elucidated through piezoelectric response force microscope, finite element method, and piezoelectrochemical tests. This study provides a new concept for the design of efficient piezocatalytic materials for converting mechanical energy into sustainable energy via microstructure regulation.

####

About Dalian Institute of Chemical Physics, Chinese Academy Sciences
Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks among the top six journals in Applied Chemistry with a current SCI impact factor of 8.271. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal

For more information, please click here

Contacts:
Fan He
Dalian Institute of Chemical Physics, Chinese Academy Sciences
hef197@dicp.ac.cn
Office: 86-411-843-79240

Copyright © Dalian Institute of Chemical Physics, Chinese Academy Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results were published in Chinese Journal of Catalysis:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project