Home > Press > Nanoscale bowtie antenna under optical and electrical excitations
Abstract:
A new publication from Opto-Electronic Science; DOI 10.29026/oes.2022.210004 overviews nanoscale bowtie antenna under optical and electrical excitations.
Optical nanoantennas, capable of converting external electromagnetic fields into a confined energy and vice versa, play a very important role in optical field manipulation. Among them, the bowtie antenna has received extensive attention from researchers in related fields because of its strong field localization and enhancement under the optical or electrical excitation, enabling a host of application scenarios.
The authors review the widespread applications of optically/electrically driven nanoscale bowtie antennas summarizing the applications of optically excited bowtie antennas in the fields of optical imaging/trapping, nonlinear optics, nanolithography, and nano-sources. The principle, preparation, characterization of the electrically driven bowtie tunnel junction are discussed, and application prospects in ultrafast tunable optical nano-sources. This paper provides a comprehensive overview of bowtie based nanophotonics.
# # # # # #
Dr. Liang Wang is a professor at University of Science and Technology of China (USTC). After obtaining a PhD in mechanical engineering from Purdue University, he has served as R&D manager and senior R&D engineer in Canon, Lam Research and IBM. In 2014, he joined USTC engaging in research in the fields of nano-optics, optoelectronic devices and integration. In recent years, the laboratory has published more than 50 papers and filed/authorized more than 30 national/international patents. In the field of near-infrared single-photon detection chips, he led the team to successfully develop 16-μm and 12-μm window chips, which passed the test and acceptance of quantum communication enterprises. The key parameter dark count of the chip is one order of magnitude lower than that of foreign competitors, exhibiting a better performance. In the fields of high-speed data interconnection, data center, and 3D sensing, the high-speed waveguide photodetector chip and the array-type single-photon lidar chip are developed.
# # # # # #
Opto-Electronic Science (OES) is a peer-reviewed, open access, interdisciplinary and international journal published by The Institute of Optics and Electronics, Chinese Academy of Sciences as a sister journal of Opto-Electronic Advances (OEA, IF=9.682). OES is dedicated to providing a professional platform to promote academic exchange and accelerate innovation. OES publishes articles, reviews, and letters of the fundamental breakthroughs in basic science of optics and optoelectronics.
# # # # # #
####
For more information, please click here
Contacts:
Conor Lovett
Compuscript Ltd
Office: 353-614-75205
Copyright © Compuscript Ltd
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Wireless/telecommunications/RF/Antennas/Microwaves
HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Possible Futures
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
Announcements
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||