MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals

A team of Boston College researchers discovered that the photocurrent flows in (illustrated in blue) along one crystal axis of the Weyl semimetal and flows out (illustrated in yellow/orange) along the perpendicular axis, represented here as a result of a new technique the team developed using quantum magnetic field sensors to visualize the flow of electricity.

CREDIT
Zhou Lab, Boston College
A team of Boston College researchers discovered that the photocurrent flows in (illustrated in blue) along one crystal axis of the Weyl semimetal and flows out (illustrated in yellow/orange) along the perpendicular axis, represented here as a result of a new technique the team developed using quantum magnetic field sensors to visualize the flow of electricity. CREDIT Zhou Lab, Boston College

Abstract:
Quantum sensors can be used to reveal a surprising new mechanism for converting light into electricity in Weyl semimetals, Boston College Assistant Professor of Physics Brian Zhou and colleagues report in the journal Nature Physics.

Quantum sensors see Weyl photocurrents flow: Boston College-led team develops new quantum sensor technique to image and understand the origin of photocurrent flow in Weyl semimetals

Chestnut Hill, MA | Posted on January 27th, 2023

A number of modern technologies, such as cameras, fiber optic networks, and solar cells rely on the conversion of light into electrical signals. But with most materials, shining a light onto their surface will not generate any electricity because there is no preferred direction for the electricity to flow. The unique properties of electrons in Weyl semimetals have made them a focus of researchers trying to overcome those limits and develop novel optoelectronic devices.

“Most photoelectrical devices require two different materials to create an asymmetry in space,” said Zhou, who worked with eight BC colleagues and two researchers from the Nanyang Technological University in Singapore. “Here, we showed that the spatial asymmetry within a single material – in particular the asymmetry in its thermoelectric transport properties – can give rise to spontaneous photocurrents.”

The team studied the materials tungsten ditelluride and tantalum iridium tetratelluride, which both belong to the class of Weyl semimetals. Researchers have suspected that these materials would be good candidates for photocurrent generation because their crystal structure is inherently inversion asymmetric; that is to say, the crystal does not map onto itself by reversing directions about a point.

Zhou’s research group set out to understand why Weyl semimetals are efficient at converting light into electricity. Previous measurements could only determine the amount of electricity coming out of a device, like measuring how much water flows from a sink into a drainpipe. To better understand the origin of the photocurrents, Zhou’s team sought to visualize the flow of electricity within the device – similar to making a map of the swirling water currents in the sink.

“As part of the project, we developed a new technique using quantum magnetic field sensors called nitrogen-vacancy centers in diamond to image the local magnetic field produced by the photocurrents and reconstruct the full streamlines of the photocurrent flow,” graduate student Yu-Xuan Wang, lead author on the manuscript, said.

The team found the electrical current flowed in a four-fold vortex pattern around where the light shined on the material. The team further visualized how the circulating flow pattern is modified by the edges of the material and revealed that the precise angle of the edge determines whether the total photocurrent flowing out of the device is positive, negative, or zero.

“These never-before-seen flow images allowed us to explain that the photocurrent generation mechanism is surprisingly due to an anisotropic photothermoelectric effect – that is to say, differences in how heat is converted to current along the different in-plane directions of the Weyl semimetal,” Zhou said.

Surprisingly, the appearance of anisotropic thermopower is not necessarily related to the inversion asymmetry displayed by Weyl semimetals, and hence, may be present in other classes of materials.

“Our findings open a new direction for searching for other highly photoresponsive materials,” Zhou said. “It showcases the disruptive impact of quantum-enabled sensors on open questions in materials science.”

Zhou said future projects will use the unique photocurrent flow microscope to understand the origins of photocurrents in other exotic materials and to push the limits in detection sensitivity and spatial resolution.

In addition to Zhou and Wang, co-authors of the report “Visualization of bulk and edge photocurrent flow in anisotropic Weyl semimetals” include Boston College Associate Professor of Physics Ying Ran, Professor of Physics David Broido, and Assistant Professor of Physics Fazel Tafti; graduate students Xin-Yue Zhang, Thomas Graham, and Xiaohan Yao; and post-doctoral researcher Chunhua Li; as well as Nanyang Technological University Professor Zheng Liu and post-doctoral researcher Ruihuan Duan.

####

For more information, please click here

Contacts:
Media Contact

Ed Hayward
Boston College
ed.hayward@bc.edu
Office: 617-552-4826
Expert Contact

Brian Zhou
Boston College
zhouqt@bc.edu
@BostonCollege

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

Quantum Physics

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Photonics/Optics/Lasers

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project