Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotubes Glow, Even Within Biological Cells

Abstract:
In some of the first work documenting the uptake of carbon nanotubes by living cells, a team of scientists from Rice University and the University of Texas Health Science Center at Houston have studied low concentrations of nanotubes in laboratory cell cultures. The research appears in this week's Journal of the American Chemical Society. It suggests that white blood cells treated nanotubes like other extracellular particles - ingesting them and sealing them off inside phagosomes.

Nanotubes Glow, Even Within Biological Cells

Scientists Use Fluorescence to Track Ultrafine Particles Taken Up by White Blood Cells

Pasadena, CA | December 06, 2004

In some of the first work documenting the uptake of carbon nanotubes by living cells, a team of chemists and life scientists from Rice University and the University of Texas Health Science Center at Houston's Texas Heart Institute have selectively detected low concentrations of nanotubes in laboratory cell cultures.

The research appears in the Dec. 8 issue of the Journal of the American Chemical Society. It suggests that the white blood cells, which were incubated in dilute solutions of nanotubes, treated the nanotubes as they would other extracellular particles - actively ingesting them and sealing them off inside chambers known as phagosomes.

"Our goal in doing the experiment was both to learn how the biological function of the cells was affected by the nanotubes and to see if the fluorescent properties of the nanotubes would change inside a living cell," said lead researcher Bruce Weisman, professor of chemistry at Rice. "On the first point, we found no adverse effects on the cells, and on the second, we found that the nanotubes retained their unique optical properties, which allowed us to use a specialized microscope tuned to the near-infrared to pinpoint their locations within the cells."

The research builds upon Weisman's groundbreaking 2002 discovery that each of the dozens of varieties of semiconducting, single-walled carbon nanotubes (SWNTs) emits its own unique fluorescent signature.

The new findings suggest that SWNTs might be valuable biological imaging agents, in part because SWNTs fluoresce in the near-infrared portion of the spectrum, at wavelengths not normally emitted by biological tissues. This may allow light from even a handful of nanotubes to be selectively detected from within the body.

Carbon nanotubes are cylinders of carbon atoms that measure about one nanometer, or one-billionth of a meter, in diameter. They are larger than a molecule of water, but are about 10,000 times smaller than a white blood cell.

The latest tests bode well on two counts. Not only did the nanotubes retain their optical signatures after entering the white blood cells, but the introduction of nanotubes caused no measurable change in cell properties like shape, rate of growth or the ability to adhere to surfaces.

In conducting the tests, Weisman was joined by colleagues Paul Cherukuri and Silvio Litovsky, both of the University of Texas Health Science Center at Houston's Texas Heart Institute, and Sergei Bachilo of Rice. The researchers cultured mouse macrophage cells in solutions containing between zero and 7 parts-per-million carbon nanotubes for periods of up to 96 hours. They found that the amount of carbon nanotubes taken up by the cells increased smoothly as the concentration or the time of exposure increased. In addition, some cultures were run at cooler temperatures and showed a slower rate of uptake, a finding that suggested that the nanotubes were being ingested through normal phagocytosis.

The samples were studied using a spectrofluorometer and a fluorescence microscope that was modified for near-IR imaging through the addition of a digital camera containing indium gallium arsenide detector elements.

Although long term studies on toxicity and biodistributions must be completed before nanotubes can be used in medical tests, the new findings indicate nanotubes could soon be useful as imaging markers in laboratory in vitro studies, particularly in cases where the bleaching, toxicity and degradation of more traditional markers are problematic.

The research was funded by the National Science Foundation, the Welch Foundation, the United States Army, Rice's Center for Biological and Environmental Nanotechnology and Rice's Center for Nanoscale Science and Technology.

Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size-2,850 undergraduates and 1,950 graduate students; selectivity-10 applicants for each place in the freshman class; resources-an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.


Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Center for Biological and Environmental Nanotechnology

Center for Nanoscale Science and Technology

Related News Press

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project