Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice student wins award for revolutionary MRI research

Abstract:
Fullerene-based contrast agents could allow first single-cell imaging

Rice student wins award for revolutionary MRI research

Houston, TX | January 18, 2005

The Nanotechnology Foundation of Texas has selected Rice University doctoral student Balaji Sitharaman as one of two winners of the 2004 George Kozmetsky Award for Outstanding Graduate Research in Nanotechnology for his efforts to create a revolutionary new class of contrast agents that could, for the first time, allow magnetic resonance imaging of individual cells.

"Balu is one of the best graduate students I have worked with in my 30 years at Rice," said Lon Wilson, professor of chemistry and Sitharaman's Ph.D. advisor. "He's already produced six peer-reviewed manuscripts that have been published or accepted by first-rank journals, and it's likely that he'll double that by the time he graduates."

More than 25 million patients in the U.S. undergo MRIs annually, and doctors use contrast agents in almost of quarter of those procedures. Contrast agents increase the sensitivity of the scans, making it easier for doctors to deliver a diagnosis. The most effective and commonly used contrast agent is the toxic metal gadolinium.

Sitharaman has created new forms of contrast agents by encasing gadolinium inside fullerenes. Fullerenes are single molecules of carbon atoms arranged in spherical or tube-shaped structures. By enclosing the gadolinium inside the carbon molecules, Sitharaman has simultaneously reduced the toxicity of the metal to near zero while boosting its effectiveness as a contrast agent.

One of Sitharaman's creations is a buckyball encasing a single atom of gadolinium. More recently, he has discovered a method of encasing as many as 100 atoms of the metal inside a short length of carbon nanotube. The resulting "gadonanotubes" are 100 times more effective as contrast agents than the best forms in clinical use.

In future work, Sitharaman plans to use existing methods of attaching antibodies and peptides to fullerenes to try to create a contrast agent that will bind only with diseased cells such as cancer cells. He is hopeful that these tissue-specific imaging agents might allow for the first intracellular, individual cell MRIs.

"I m grateful and honored by this recognition by the Nanotech Foundation of Texas and look forward to the benefit of our research to diagnostic medicine," said Sitharaman. Sitharaman and University of Texas at Austin student Aaron Saunders were named as this year's Kozmetsky Award recipients on Jan. 12. The prestigious award includes a $5,000 prize.

The awards are the first of their kind offered to U.S. graduate students working on nanotechnology. A Rice student has won one of the two awards in each of the first two years they have been offered.

Competition for the awards is fierce. For example, the scientific review board that judged this year's applicants used a 400-point scale, and the top four finishers were separated by only 42 points.

The Nanotechnology Foundation of Texas is an initiative funded by private individuals, corporations, and other foundations to accelerate research in nanotechnology by increasing the visibility of nanotechnology research, expanding research funding, and recruiting the best nanotechnology researchers from around the world to come to Texas.


Contact:
Jade Boyd
jadeboyd@rice.edu
713-348-6778
Rice University

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project