Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny Particles Could Solve Billion-Dollar Problem

Abstract:
New research from Rice University's Center for Biological and Environmental Nanotechnology finds that nanoparticles of gold and palladium are the most effective catalysts yet identified for remediation of one of the nation's most pervasive and troublesome groundwater pollutants, trichloroethene or TCE. The research, conducted by engineers at Rice and the Georgia Institute of Technology, will appear next month in the journal Environmental Science and Technology, a publication of the American Chemical Society.

Tiny Particles Could Solve Billion-Dollar Problem

Bimetallic Nanoparticles Break Down TCE 100 Times Faster Than Bulk Catalysts

Rice University's Center for 
Biological and Environmental Nanotechnology

Houston, TX | February 23, 2005

New research from Rice University's Center for Biological and Environmental Nanotechnology finds that nanoparticles of gold and palladium are the most effective catalysts yet identified for remediation of one of the nation's most pervasive and troublesome groundwater pollutants, trichloroethene or TCE.

The research, conducted by engineers at Rice and the Georgia Institute of Technology, will appear next month in the journal Environmental Science and Technology, a publication of the American Chemical Society.

"The advantages of palladium-based TCE remediation are well-documented, but so is the cost," said lead researcher Michael Wong, assistant professor of chemical engineering and chemistry at Rice. "Using nanotechnology, we were able to maximize the number of palladium atoms that come in contact with TCE molecules and improve efficiency by several orders of magnitude over bulk palladium catalysts."

TCE, which is commonly used as a solvent to degrease metals and electronic parts, is one of the most common and poisonous organic pollutants in U.S. groundwater. It is found at 60 percent of the contaminated waste sites on the Superfund National Priorities List, and it is considered one of the most hazardous chemicals at these sites because of its prevalence and its toxicity. Human exposure to TCE has been linked to liver damage, impaired pregnancies and cancer.

Cleanup costs for TCE nationwide are estimated in the billions of dollars. The Department of Defense alone estimates the cost of bringing its 1,400 TCE-contaminated sites into EPA compliance at more than $5 billion.

The typical approach to getting rid of TCE involves pumping polluted groundwater to the surface, where it can be exposed to chemical catalysts or microorganisms that break the TCE down into less toxic or non-toxic constituents. In general, chemical catalysis offers faster reactions times than bioremediation schemes but also tends to be more expensive.

One of the major advantages of using palladium catalysts to break down TCE is that palladium converts TCE directly into non-toxic ethane. By contrast, breaking down TCE with more common catalysts, like iron, produces intermediate chemicals, like vinyl chloride, that are more toxic than TCE.

In the CBEN experiments, Wong and collaborators compared the effectiveness of four varieties of palladium catalysts: bulk palladium, palladium powder on an aluminum oxide support base, pure palladium nanoparticles and a hybrid nanoparticle developed by Wong that consists of a gold nanoparticle covered with a thin coat of palladium atoms.

As metal particles get progressively smaller, a higher percentage of the atoms in the particle are found on the surface of the particle instead of being locked away inside the metal where they cannot interact with other chemicals. For example, in the bulk palladium, less than 4 percent of the palladium atoms were on surface of the particle. Pure palladium nanoparticles had 24 percent of the metal on the surface. In the gold-palladium nanoparticles, 100 percent of the palladium atoms are accessible for reaction.

"We've documented the efficiency of these catalysts in breaking down TCE, and the next step is engineering a system that will allow us to get at the polluted groundwater," said Joe Hughes, professor of civil and environmental engineering at Georgia Institute of Technology and a co-leader of CBENšs environmental research programs. "The scale of TCE contamination is enormous, so any new scheme for TCE remediation has got to clean large volumes of water very quickly for a just a few pennies."

Hughes, Wong and their collaborators hope to develop a device that would include a cylindrical pump containing a catalytic membrane of the gold-palladium nanoparticles. The device would be placed down existing wells where it would pump water through continuously, breaking TCE into non-toxic components.

Cost is the primary hurdle to cleaning up TCE-polluted groundwater. CBEN's team hopes to drive down costs by using every ounce of palladium to maximum efficiency, and by eliminating drilling costs for new wells, construction costs for surface treatment facilities and energy costs of lifting water to the surface.

Nanotechnology is critical to the scheme because only a nanoscale catalyst will be efficient enough to provide the throughput needed to make the whole approach effective. Tests in Wong's lab have found that the gold-palladium nano-catalysts break TCE down about 100 times faster than bulk palladium catalysts.

CBEN's research is funded by the National Science Foundation.

###


About CBEN

The Center for Biological and Environmental Nanotechnology is a National Science Foundation Nanoscale Science and Engineering Center dedicated to developing sustainable nanotechnologies that improve human health and the environment. Located at Rice University in Houston, CBEN is a leader in ensuring that nanotechnology develops responsibly and with strong public support.

For more information visit cben.rice.edu.

About Rice University

Rice University is consistently ranked one of Americašs best teaching and research universities. It is distinguished by its: size - 2,850 undergraduates and 1,950 graduate students; selectivity -10 applicants for each place in the freshman class; resources - an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information visit www.rice.edu.



Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright Š Rice

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Georgia Institute of Technology

Related News Press

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project