Home > News > From The Lab: Nanotechnology - Shrinkable Storage
May 20th, 2005
From The Lab: Nanotechnology - Shrinkable Storage
Abstract:
In a hard drive, each bit of information is written on magnetic grains inside a hard disk. Engineers have so far squeezed more data into smaller media by using fewer and fewer grains to hold each bit. But hard-disk manufacturers are now up against physical limits on how much their grains can shrink before they become unstable and lose data. Recent work by researchers from the University of Konstanz in Germany and Hitachi reveals a new magnetic medium that could be the basis for the hard drive of the future.
Source:
technologyreview.com
Related Links |
Related News Press |
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||