MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gilded Bacteria

Abstract:
Humidity sensor: hybrid nanoelectronics made from living bacteria and gold nanoparticles

Gilded Bacteria

October 07, 2005

Living organisms as an integral part of electronic components? What may look like science fiction at first glance is actually a serious approach to the nanoelectronics of tomorrow. Living organisms could provide the required nanostructures. Researchers at the University of Nebraska (Lincoln, USA) have now shown that bacteria coated with gold nanoparticles can function as a humidity sensor.

The properties of metallic nanoparticles differ radically from those of larger particles and are of great interest for nanoelectronics. In order to use nanoparticles, they must be placed on a suitable support, a “nanoscaffold.” “Biological structures have proven to be promising supports,” explains Ravi Saraf, “especially when their responses to stimuli can be integrated.”

Saraf and his co-worker, Vikas Berry, produced a chip covered with extremely fine gold electrodes and applied a suspension of Bacillus cereus. On such surfaces, these long bacteria basically lie down to form bridges between the pairs of electrodes. Then the nanoparticles come in: the researchers dipped their chip into a solution of gold nanoparticles coated with polylysine, a synthetic protein. The tiny gold particles are strongly attracted to the bacterial surface, which contains long, brushlike, highly mobile chain molecules that are negatively charged. Like tentacles, these surround the gold particles - positively charged by the polylysine - and hold them tight. At the end of this process, the bacteria are coated with a thin layer of gold nanoparticles - and are still alive.

The researchers apply a voltage of 10 V across the electrode pairs and measure the current across the bacterial bridges to complete the bioelectronic humidity sensor. If the humidity is increased from about 0 to 20%, the current decerases by a factor of 40. Why does this chip react so sensitively to changes in humidity? Moisture causes the bacterial membrane to swell, which increases the distance between the individual gold particles attached to it by about 0.2 nm. This is not much, but it is enough to hinder electron transport between the particles. Unlike a “normal” macroscopic gold layer, in which the electrons can “flow” unhindered, here they must “jump” from one particle to the next.

“Our humidity sensor demonstrates the vast potential that lies in hybrid structures containing microorganisms and nanoparticles,” says Saraf.

####


Author: Ravi F. Saraf, University of Nebraska, Lincoln (USA), link

Title: Self-Assembly of Nanoparticles on Live Bacterium: An Avenue to Fabricate Electronic Devices

Angewandte Chemie International Edition 2005, 44, 6668, doi: 10.1002/anie.200501711

Contact:
Editorial office: angewandte@wiley-vch.de

David Greenberg (US)
dgreenbe@wiley.com

Julia Lampam (UK)
jlampam@wiley.co.uk

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Materials/Metamaterials/Magnetoresistance

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project