Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanostructure Discovery Propels Solar Thin-Film

Abstract:
New Model Predicts Spontaneous Nanostructuring to Explain CIGS Thin-Film Efficiency



Austin, TX | Posted on October 31, 2005

Nanostructure Discovery by HelioVolt CEO Propels Solar Thin-Film Commercialization

After four years of research by HelioVolt CEO Dr. BJ Stanbery and his team, HelioVolt Corporation, a next-generation solar energy technology company, today announced the joint publication with researchers from the National Renewable Energy Lab (NREL) of experimental results confirming predictions of Dr. Stanbery's new theoretical model published in January, which explains much of the observed device physics and high performance characteristics of copper indium gallium selenide-based (CIGS) photovoltaics (PV). The Intra-Absorber Junction (IAJ) or Stanbery Model represents a key accomplishment in the scientific community's ongoing efforts to better understand the physics behind CIGS thin-films. The Stanbery model is a major leap forward for commercialization of CIGS photovoltaics.

After setting the world record for solar thin-film efficiency during his tenure at Boeing Aerospace Company, Dr. Stanbery focused his efforts on commercializing CIGS. CIGS photovoltaics have traditionally lagged behind silicon in terms of research and investment despite the dramatically lower materials cost of CIGS. Dr. Stanbery's discovery now equips the photovoltaic industry with the in-depth understanding of CIGS that is necessary to bring the material to the mass market. One key prediction of the Stanbery Model has now been confirmed by research at the National Renewable Energy Laboratory (NREL). The model asserts that CIGS performance is attributed to a process called "spontaneous nanostructuring" by which the material in the CIGS absorber layer arranges itself at the atomic level for optimum photovoltaic efficiency. In other words, Dr. Stanbery's model revealed that CIGS inherent physical properties make it one of nature's best solar materials.

Although its high-performance characteristics were evident in both small-area cells and large-area modules, advanced design and commercialization of CIGS photovoltaics have previously been hampered by a lack of fundamental understanding of the material. Particularly problematic to development, researchers found that CIGS devices made with the same composition and manufacturing methods inexplicably varied in performance.

Researchers were unable to identify consistent differences in high and low-efficiency material's absorber layers: initial investigation at the microscopic level showed a homogeneous, consistent structure. An explanation for the varied performance and consequent methods for improvement continued to prove elusive.

Dr. Stanbery deduced that the answer lies in structures that are orders of magnitude smaller: what appeared homogenous is actually organized at the nano-scale. The Stanbery Model now explains the perplexing behavior of CIGS devices, revealing the unique defect physics of the absorber layer by describing its nanostructure. According to the model, CIGS with compositions in the useful range for high performance PV spontaneously organizes to form a unique structure called a "percolation network" through which electrical currents flow smoothly.

"The nanostructure network that naturally occurs in CIGS is like creating separate express lanes for the positive and negative electrical charge carriers, reducing collisions between them and thereby increasing the current that flows outside of the device," said Dr. Stanbery. "Even when the composition of the CIGS devices varies, as long as this network exists the efficient flow of the charge carriers takes place." With this new understanding of how CIGS is structured and why the material performs the way it does, we are now able to effectively harness and improve upon what has long been the most efficient thin-film for photovoltaics.

For over 25 years, Dr. Stanbery has been dedicated to realizing a single vision: making photovoltaic power efficient, economically viable, and widely used. Renowned for his innovations in the design and manufacture of photovoltaic devices, Stanbery steered industry giant Boeing toward that goal, registering seven patents in thin-film photovoltaic technology, successfully manufacturing and deploying photovoltaic devices for spacecraft, and, in 1990, leading the team that achieved the world record in multi-junction thin-film cell efficiency, a distinction he still holds to this day. As Founder and CEO of HelioVolt, Dr. Stanbery is applying his fundamental understanding of CIGS thin-film to the commercialization of efficient, durable, CIGS photovoltaics incorporated into conventional building materials.

####

About HelioVolt Corporation:
HelioVolt Corporation was founded in 2001 in order to develop and market new technology for applying thin-film photovoltaic coatings to conventional construction materials. The company's proprietary FASST process, based on rapid semiconductor printing, was invented by HelioVolt founder Dr. Billy J. Stanbery, an eminent expert within the international PV community in the materials science of CIS and related compound semiconductors. FASST is a low-cost, flexible manufacturing process for CIGS synthesis and is protected by both eight issued US patents and by global patents pending.

For more information, please click here

Media Contact:
Caroline Venza
Antenna Group for HelioVolt
caroline@antennagroup.com
415-977-1939

Copyright © HelioVolt

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project