Home > Press > Caltech to use new Nanocatalyst Immobilization Technology
Caltech to use new Nanocatalyst Immobilization Technology
Posted on March 15, 2006
Over the last decade or so, a new genre of nano-sized ultra-high-surface-area catalyst particles have been developed to high degrees of efficacy. When added to polluted water (employed in-solution e.g. in-situ), these new catalysts have been shown to effect extremely rapid, complete and inexpensive catalytic destruction (chemical breakdown to benign species) of a host of approximately 50 recalcitrant, ubiquitous, and carcinogenic groundwater pollutants on the EPA-'Hotlist'. These include but are not limited to chlorinated lower alkanes, alkenes and aromatics (including PCE, TCE, cis, trans, and 1,1 DCE, and vinyl chloride, and all chlorination states of benzene and other aromatics), several THMs, DDT, Lidane, PCBs, Dioxins, TNT, NDMA, Organic Dyes, dichromates, perchlorate, a large host of pharmaceutical residuals, and other recalcitrant trace pollutants of immediate concern in our groundwater. The desire to use these highly effective catalysts for various large-scale GWR applications has been a natural consequence, but catalytic nanoparticles themselves are toxic, so their in-situ use necessitates that they in turn be completely removed from the treated water prior to it’s use. Because these particles are so small (and numerous), very robust (e.g. High-performance R.O.) operations are required to accomplish such removal, rendering the overall remediation operation much too expensive for large scale groundwater (or other) remediation operations.
Conversely, ex-situ use of nanocatalysts (immobilizing them on a ‘support’ in a batch or -more importantly- a flow-through reactor) has been stymied as well. Why? The engineering challenges inherent to immobilizing nano-sized particles for cost-effective ex-situ use (allowing scale-up for high throughput, high conversion applications like groundwater remediation) had, until recently, proven insurmountable, precluding commercialization. Until 10/04, all nano-particle immobilization technologies for continuous flow-through processing units had failed to meet the seven criteria necessary for cost-effective use in large-scale remediation operations:
The new High Efficiency Nano-Catalyst Immobilization (HENCI) technology uniquely meets all the above criteria, and as such is the last piece in the puzzle for unleashing the true power of nanocatalysis to remediate our groundwaters. As such, HENCI is poised to usher in a new era in nano- and micro-catalysis marked by a leap in efficacy of dilute-reactant applications such as groundwater remediation. Detailed HENCI technology capability information, live demonstration videos, and ancillory information (including presentations to the NWRI and other agencies) is availible at www.henci.com
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||