Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > VCU researchers develop new method for synthesis of nanomaterials

Abstract:
Researchers share findings at American Chemical Society National Meeting

VCU researchers develop new method for synthesis of nanomaterials

Richmond, VA | Posted on March 30, 2006

Virginia Commonwealth University chemists, using a simple, commercial microwave oven, have developed a new method for the synthesis of nanomaterials that can control the dimensions and properties of rods and wires that are just one billionth of a meter in size.

The method, known as microwave irradiation, or MWI, is considered a fast and easy way to create highly versatile, tailored nanorods and nanowires to be used in medical applications, drug delivery, sensors, communications and optical devices because microwave heating can provide significant enhancement in reaction rates.

M. Samy El-Shall, Ph.D., professor of chemistry and affiliate professor of chemical engineering at VCU, is discussing his ongoing work of the design, synthesis and characterization of nanoparticles at the American Chemical Society National Meeting & Exposition in Atlanta, March 26-30. In addition, his colleague, Asit Baran Panda, a post-doctoral fellow in the VCU Department of Chemistry, will present this study.

“The synthesis of new materials made of particles, rods and wires with dimensions in the nanometer scale is among the most active areas of research in science due to the unique properties of these materials compared to conventional materials made from micron sized particles,” said El-Shall, who is lead author of the study.

“MWI is unique in providing scaled-up processes thus leading to a potentially important industrial advancement in the large-scale synthesis of nanomaterials,” said El-Shall.

Most methods currently used to synthesize nanomaterials are complicated, require specific equipment and produce small amounts of nanomaterials,” he said.

Although MWI process involves the use of a conventional microwave, it requires a defined recipe of chemicals and solvents to create the nanomaterials in the laboratory setting.

The advantage of using a microwave is that the energy goes directly through molecules compared to thermal heat which just applies heat to everything. In addition, El-Shall said that the nanorods and nanowires made by this method self-assemble into uniform aligned arrays of rods with well-controlled spacing between the rods. This is critical to be able to measure their individual conductivity and fluorescence, he said.

“The key issue here is the control of the size, shape and lateral dimensions of nanostructures because these nanoparticles in the form of rods, wires, belts, cubes, etc., are the building blocks used in devices and processes such as light-emitting diodes, solar cells, single electron transistors, lasers and biological labels,” he said.

Furthermore, El-Shall and his research team found that nanorods that are 1nm wide and 5-6nm long could be synthesized in just 30-60 seconds; while longer nanowires, 1.5nm wide and 350nm long, could be synthesized in two minutes. Traditional methods take many more hours to synthesize such materials.

El-Shall and his team are currently examining how to apply this basic principal to a broader scale to synthesize nanowires with multiple functions such as fluorescence, conductivity and magnetism.

These findings were reported in the March issue of the Journal of the American Chemical Society.

This work was supported by a grant from the National Science Foundation.

El-Shall collaborated with Asit Baran Panda and Garry Glaspell, both post-doctoral fellows in El-Shall’s group in the VCU Department of Chemistry.

####

About VCU and the VCU Medical Center:
Located on two downtown campuses in Richmond, Va., Virginia Commonwealth University is ranked nationally by the Carnegie Foundation as a top research institution and enrolls more than 29,000 students in more than 181 certificate, undergraduate, graduate, professional and doctoral programs in the arts, sciences and humanities in 15 schools and one college. Forty of the university’s programs are unique in Virginia, and 20 graduate and professional programs have been ranked by U.S. News & World Report as among the best of their kind. MCV Hospitals, clinics and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the leading academic medical centers in the country.

For more information, please click here.


Media Contact:
Sathya Achia-Abraham
University News Services
(804) 827-0890
sbachia@vcu.edu

Copyright © Virginia Commonwealth University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project