Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Movies Show Nanotubes Bend Like Sluggish Guitar Strings

Abstract:
Rice Videotapes Single Nanotube Using Standard Microscopes, Cameras

Movies Show Nanotubes Bend Like Sluggish Guitar Strings

Houston, TX | Posted on June 27, 2006

In an exciting advance in nanotechnology imaging, Rice University scientists have discovered a way to use standard optical microscopes and video cameras to film individual carbon nanotubes – tiny cylinders of carbon no wider than a strand of DNA. The movies show that nanotubes can be "plucked" by individual molecules of water and made to bend like guitar strings.

"Nanotubes are fairly stiff, and when they are long enough, the bombardment by the surrounding water molecules makes them bend in harmonic shapes, just like the string of a guitar or a piano," said lead researcher Matteo Pasquali, associate professor of chemical and biomolecular engineering and chemistry, and co-director of Rice's Carbon Nanotechnology Laboratory.

The results, which are due to appear in an upcoming issue of Physical Review Letters, were published online June 23.

Pasquali said the analogy with stringed instruments doesn't completely fit with the nanoscale world. Unlike the guitar string, for example, the carbon nanotube is plucked randomly in many places at the same time. Also, it cannot resonate like the guitar string because the nanotube has too little mass, and its vibrations die quickly because it's surrounded by viscous liquid.

Carbon nanotubes are hollow, hair-like strands of pure carbon that are 100 times stronger than steel but weigh only one sixth as much. Nanotubes are one nanometer, or one billionth of a meter, wide. Human hair, by comparison, is about 80,000 nanometers wide.

Nanotubes tend to clump together. To isolate individual tubes, Pasquali and doctoral student Rajat Duggal, now a research engineer at General Electric Co., put clumps of tubes into a mixture of water and a soap-like surfactant called sodium dodecyl sulphate, or SDS. When the nanotube clumps were broken apart with ultrasonic sound waves, the SDS surrounded the individual nanotubes and held them apart, in the same way laundry detergent surrounds and separates dirt particles in the wash.

In order to see individual nanotubes with a standard optical microscope, like those found in most biological laboratories, Pasquali and Duggal added a common red fluorescent dye that's often used to stain cells. The dye, which attached itself to the SDS surrounding each nanotube, glows brightly enough to be seen with the naked eye under a microscope.

"I had been working on fluorescence visualization of DNA, and other students in the lab were working on nanotubes," Duggal recalled. "A colleague was disposing of nanotube suspensions after an experiment, and I asked them to spare me a vial so I could try them with an optical microscope. I thought of decorating the nanotubes with a fluorescent dye that would prefer to be with the SDS rather than the water, and when I looked under the microscope – to my delight – I found bright dancing nanotubes."

Duggal said scientists have used electron microscopes to observe the underdamped vibrations of nanotubes in vacuum, but his and Pasquali's technique gives scientists the ability to see how nanotubes behave in liquids in real time.

Pasquali and Duggal videotaped dozens of nanotubes at 30 frames per second. A frame-by-frame analysis of the tapes revealed harmonic bending in several nanotubes that were 3-5 microns long and showed that the measured amplitude of the bending motion is consistent with earlier predictions of Rice materials scientist Boris Yakobson, professor of mechanical engineering and materials science and of chemistry.

Pasquali said the method works with other surfactants and it may be useful for life scientists who want to find out how nanotubes interact with cells, biomolecules and other biological entities.

"Our method doesn't provide the sensitivity or precision you get with the infrared, single-nanotube imaging methods developed last year by Rice chemist Bruce Weisman and doctoral student Dmitri Tsyboulski, but the equipment we need is less expensive," Pasquali said. "It's akin to the difference between playing a Stadivarius and playing a common violin."

####


The video is available at http://www.rice.edu/media/nanotubevideo.html

The research was supported by the National Science Foundation.

About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size: 2,850 undergraduates and 1,950 graduate students; selectivity: 10 applicants for each place in the freshman class; resources: an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, please click here

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project