Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice Scientists Unveil 'Nanoegg'

Abstract:
Asymmetric Particles Focus Light in Unique Way

Rice Scientists Unveil 'Nanoegg'

Houston, TX | Posted on July 20, 2006

Researchers at Rice University's Laboratory for Nanophotonics (LANP) have unveiled the "nanoegg," the latest addition to their family ultrasmall, light-focusing particles. A cousin of the versatile nanoshell, nanoeggs are asymmetric specks of matter whose striking optical properties can be harnessed for molecular imaging, medical diagnostics, chemical sensing and more.

Nanoeggs are described in the July 18 issue of the Proceedings of the National Academy of Sciences.

Like nanoshells, nanoeggs are about 20 times smaller than a red blood cell, and they can be tuned to focus light on small regions of space. But each nanoegg interacts with more light ­ about five times the number of wavelengths ­ than their nanoshell cousins, and their asymmetric structure also allows them to focus more energy on a particular spot.

"The field of nanophotonics is undergoing explosive growth, as researchers gain greater and greater sophistication in the design and manipulation of light-active nanostructures," said LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. "The addition of nanoeggs and, earlier this year, nanorice to LANP's family of optical nanoparticles is a direct result of our increased understanding of the interaction between light and matter in this critical size regime."

Like nanoshells, nanoeggs have a spherical, non-conducting core that's covered with a thin metal shell. But where the casing on a nanoshell has a uniform thickness ­ like the peel covering an orange ­ the nanoegg's covering is thicker on one side than the other ­ in much the same way that a hard-boiled egg white is thick in some places and thin in others. The off-center core in the nanoegg radically changes its electrical properties, said co-author and theoretical physicist Peter Nordlander, professor of physics and astronomy. The reasons for this have to do with the odd and often counterintuitive rules that govern how light interacts with electrons at the nanoscale.

"All metal particles have a sea of free electrons flowing continuously over their surface called plasmons," Nordlander said. "These plasmons slosh around constantly, just like waves in the ocean. Light also travels in waves, and when the wavelength of incoming light matches the wavelength of the plasmon, the amplitude of their sloshing gets bigger and bigger, much like the waves in a bathtub when a child rhythmically sloshes bathwater until it spills out of the tub."

In order for plasmons to be excited by light, the electrons on a particle's surface must behave in such a way as to create a 'dipole moment,' a state marked by two equal but opposite poles, one positive and the other negative ­ much like a magnet that attracts on one end and repels on the other. "Without a dipole moment, there is no 'handle' for light to grab hold of," Nordlander said. "In symmetric nanoshells, most of the light energy is lost to these 'dark modes.' With symmetry breaking, we are able to make these dark modes bright by providing dipole moments for more of the incoming light."

Co-authors on the paper include Jason Hafner, assistant professor of physics and astronomy and of chemistry, and graduate students Hui Wang, Yanpeng Wu, Britt Lassiter and Colleen Nehl. The research was supported by the U.S. Army Research Office, the National Science Foundation and the Welch Foundation.

####

About Rice University:
Rice University is consistently ranked one of America's best teaching and research universities. It is distinguished by its: size: 2,850 undergraduates and 1,950 graduate students; selectivity: 10 applicants for each place in the freshman class; resources: an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice's wooded campus is located in the nation's fourth largest city and on America's South Coast.

For more information, please click here

Contact:
Jade Boyd
(713) 348-6778
jadeboyd@rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project