Home > News > Manuscript Demonstrates DNA Delivery and Expression in the Mouse Retina
January 9th, 2007
Manuscript Demonstrates DNA Delivery and Expression in the Mouse Retina
Abstract:
Copernicus Therapeutics, Inc. announced today that a research team at University of Oklahoma Health Sciences Center, led by Dr. Muna Naash, professor of Cell Biology, demonstrated that Copernicus' DNA nanoparticles safely and effectively deliver and express DNA in the rods and cones of the mouse retina. According to Dr. Naash's team, current data indicate that greater than 95% of these retinal cells expressed the DNA nanoparticle and there was no evidence of toxicity. These findings, published on December 20, 2006 in the journal PLoS ONE, have significant implications for the development of DNA-based therapeutics for various eye disorders, including retinitis pigmentosa and macular degeneration company officials said.
"These exciting results suggest that genetic replacement therapy is feasible for various eye diseases," said Robert C. Moen, M.D., Ph.D., president and CEO of Copernicus. "The Copernicus DNA nanoparticle formulation is safe and effective and permits a non-viral approach to treat human disease by introducing a normal copy of the underlying gene that is responsible for the disease process. In addition to corrective therapy for genetic diseases such as retinitis pigmentosa, nucleic acid nanoparticles may provide effective treatments for more complex disorders such as diabetic retinopathy, macular degeneration, and various diseases that injure ganglion cells and the optic nerve."
Source:
businesswire.com
Related News Press |
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||