Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Methods & Tools Needed to Measure Exposure to Airborne Nanomaterials

Abstract:
New methods and tools for measuring exposure to airborne engineered nanomaterials will be required to protect the health of workers in nanotechnology-related jobs— estimated to total 10 million people by 2014—according to two occupational health experts writing in the inaugural issue of the journal Nanotoxicology.

New Methods & Tools Needed to Measure Exposure to Airborne Nanomaterials

Washington, DC | Posted on April 17th, 2007

The article, "Assessing Exposure to Airborne Nanomaterials: Current Abilities and Future Requirements," written by Andrew Maynard, chief science advisor at the Wilson Center's Project on Emerging Nanotechnologies, and Robert Aitken, director of strategic consulting at the Institute of Occupational Medicine (Edinburgh, UK), can be viewed online at http://www.nanotoxicology.net .

"Airborne engineered nanomaterials present complex exposure measurement challenges," Maynard said. "Conventional approaches—measuring the mass of airborne material—will not always be sufficient. This presents a challenge because studies have indicated that, on a mass-for-mass basis, certain nanometer-scale particles may be more toxic than larger particles with a similar composition. In other words, smaller particles may be more harmful than conventional thinking would lead us to believe."

Maynard and Aitken reduced the incredibly diverse set of possible engineered nanoparticles into nine distinct categories, ranging from very simple spherical particles to complex multifunctional particles. By pairing these categories with particle properties associated with potential health effects, they teased out possible monitoring approaches for each particle-property combination.

"What our analysis shows is that in the complex new ‘nano world' there is no single or simple method for monitoring nanoaerosol exposures in order to assess and manage potential health effects," Aitken explained. "There are instruments that present partial solutions to the measurement challenges we face. But at the end of the day, we lack the tools and devices that are sophisticated, cost-effective and fast enough to do the job."

Maynard and Aitken conclude that current approaches of measuring the number of particles in a volume of air, surface areas, and mass concentration, will all be useful to some degree. However, further research is needed to identify which is most important for specific nanomaterials and which measurement methods are most effective.

The authors advocate developing a new "universal aerosol monitor" capable of providing detailed information on the nature of airborne engineered nanomaterials to which people are exposed. Maynard, Aitken and 12 other experts included development of such a versatile measurement tool among five grand challenges that they viewed as essential to achieving the safe handling of nanotechnology in an article that appeared in the November 16, 2006 issue of the journal Nature.

The proposed wearable sampling device would measure aerosol number, surface area, and concentration mass simultaneously and would be low cost. Today, stand-alone instruments can perform the individual types of measurements called for by Maynard and Aitken. "Bringing these technologies together into a single package within the size and cost parameters discussed does present a significant challenge," they write.

"An economical integrated device will empower small and large nanotechnology industries alike to reduce uncertainty over what their workers are exposed to, and enable them to develop safer working environments" said Maynard. "This will require targeted research into developing new methodologies and new instruments. But the rapid advancement and commercialization of nanotechnologies are leading to the need for effective—if not necessarily perfect—exposure measurement approaches and devices to be developed as soon as possible."

In 2005, nanotechnology was incorporated into $30 billion in manufactured goods—a number predicted to grow to $2.6 trillion in annual manufactured goods by 2014. Already, there are almost 400 manufacturer-identified nanotechnology-based consumer products on the market—ranging from computer chips to automobile parts and from clothing to cosmetics and dietary supplements (see: http://www.nanotechproject.org/consumerproducts ).

Nanotechnology is the ability to measure, see, manipulate and manufacture things usually between 1 and 100 nanometers. A nanometer is one billionth of a meter; a human hair is roughly 100,000 nanometers wide.

####

About The Project on Emerging Nanotechnologies
The Project on Emerging Nanotechnologies is an initiative launched by the Woodrow Wilson International Center for Scholars and The Pew Charitable Trusts in 2005. It is dedicated to helping business, government and the public anticipate and manage possible health and environmental implications of nanotechnology. For more information about the project, log on to http://www.nanotechproject.org .

For more information, please click here

Contacts:
Sharon McCarter
Phone: (202) 691-4016

Copyright © Woodrow Wilson International Center for Scholars

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Human Interest/Art

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project