Home > News > Engineers provide insight into the dynamics of molecular self-assembly
July 6th, 2007
Engineers provide insight into the dynamics of molecular self-assembly
Abstract:
By studying how a layer of molecules grows into an ordered layer from the edge of a rectangular silicon wafer, engineers at North Carolina State University, working with researchers from the National Institute of Standards and Technology (NIST), have established the time evolution of self-propagating self-assembly fronts. The team is the first to confirm the phenomenon in a real physical system.
The NC State researchers, Dr. Jan Genzer, professor of chemical and biomolecular engineering, and Dr. Kirill Efimenko, research assistant professor of chemical and biomolecular engineering, and NIST researchers, Dr. Jack Douglas, Dr. Daniel Fischer and Dr. Frederick Phelan, examined the spontaneous assembly of organosilane molecules into a monolayer film formed on an oxidized silicon surface.
They found that if a supply of the carbon-silicon-based molecule is placed along one edge of a treated silicon wafer, under controlled conditions, the organosilane molecules spontaneously organize themselves into a well-ordered layer, creating a carpet-like layer on the silicon that advances from the edge of the wafer at a constant velocity where the ordering initiates, ultimately covering the surface at long times. By following this process using a high resolution synchrotron X-ray technique and computer simulations, the NC State/NIST team established that the propagating wavefronts did not follow the constant width predicted by the classical mean-field theory that is widely believed to govern reaction-diffusion and self-assembly processes. (A wavefront is the leading edge of a wave or line of points that have the same phase or stage in a process.) What actually occurred is described as a "power-law broadening in time" when an autocatalyst is present.
Source:
nanowerk.com
Related News Press |
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||