MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Snapshots of electrons

August 13th, 2007

Snapshots of electrons

Abstract:
No flash of light can be shorter than the time it takes the wave carrying the flash to perform a full oscillation. A team headed by Prof. Ferenc Krausz, Director, Max Planck Institute of Quantum Optics in Munich, Germany, has now succeeded in generating - for the first time - flashes of intense laser light that deliver more than half of their energy within a single wellcontrolled wave cycle. Atoms exposed to this extreme light pulse emit an attosecond X-ray pulse (1 attosecond = one billionth of a billionth of a second) whose wave components, if oscillating more slowly, would represent nearly all colours of visible light, all the way from blue through green and yellow to red. The resultant "white" pulse has an expected duration of about 100 attoseconds and is composed of more than a million X-ray photons. Therefore, it is brief enough, and powerful enough to capture the motion of electrons moving on molecular orbitals. Real-time observation of the electrons that bind atoms together will provide invaluable insight into the microscopic origin of the formation and deformation of molecules. The results were reported in the July issue of New Journal of Physics and featured on the cover of Science (August 10, 2007).

Source:
nanowerk.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project