Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Does coating nanoparticles make them safe(r) for cosmetics?

October 29th, 2007

Does coating nanoparticles make them safe(r) for cosmetics?

Abstract:
Our title today poses a loaded question. The cosmetics industry of course would argue that their products are already safe, whether they use nanoparticulate ingredients or not. On the other hand, there are research reports that show that nanoparticles could cause DNA damage and could accumulate in organs (with unknown consequences). It has not conclusively been proven, or disproven, that nanoparticles in cosmetics applied to the (healthy) skin are able to penetrate the skin and get into the body. Sunscreens are a good example for the pro & contra discussion about nanoparticles in cosmetics. Most people use sunscreen for two reasons: to avoid getting sunburn and to avoid getting skin cancer. If applied frequently and thoroughly, sunscreens do prevent sunburn. However, no one has ever determined that sunscreens actually prevent skin cancer. Another, mostly aesthetic, limitation with sunscreens is that they don't rub into the skin very easily. You rub, and rub, and rub, but still your skin has that pasty, white appearance. That's due to the two most common active ingredients in sunscreens - zinc oxide (ZnO) and titanium dioxide (TiO2). These inorganic materials are used in sunscreen in order to reflect UV radiation and reduce the amount of organic materials necessary to achieve a specific SPF (sun protection factor) value, but the drawback is they leave that unsightly white film. To resolve this problem, manufacturers have started using nanoparticles in place of the bulk forms of zinc oxide and titanium dioxide because the smaller particle size reduces the visibility of the cream. This could potentially mean solving one problem by creating another because TiO2 nanoparticles - a major component of photovoltaic cells - emit photoelectrons when exposed to UV light. These electrons, in turn, induce the formation of peroxides, free radicals and other reactive oxygen species (ROS) which interact with lipids and DNA, causing damage which may lead to a host of medical problems. Researchers have now found clear evidence that titanium dioxide nanoparticles catalyze DNA damage. Fortunately, they also came up with a solution - by coating them - that would allow these nanoparticles to be used with less risk in cosmetics.

Source:
nanowerk.com/

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Personal Care/Cosmetics

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018

Programmable materials find strength in molecular repetition May 23rd, 2016

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project