Home > News > Computational modelling allows insights into cell membrane fusion
November 6th, 2007
Computational modelling allows insights into cell membrane fusion
Abstract:
Researchers from France, the UK and Austria have modelled the SNARE protein complex that acts as a catalyst in the fusion of two membranes, using the processing power of the Distributed European Infrastructure for Supercomputing Applications (DEISA). They hope to open up new opportunities for pharmaceutical development.
'Basic research is essential, since there are several aspects concerning the functioning of proteins and cell membranes that are not yet fully understood. A better understanding of these mechanisms will facilitate, for example, the development of new pharmaceutical agents,' explains Dr Marc Baaden, researcher at the Laboratory of Theoretical Biochemistry in Paris. 'By examining a phenomenon at the atomic level, we can gain insight into the behaviour of cell membranes and proteins in general and on a larger scale.'
Many diseases are associated with functional disorders of the cell membranes. In the case studied by Dr Baaden and his colleagues, the cell membranes either do not fuse at all or fuse too heavily. The SNARE protein complex is responsible for this fusion. Disturbed functioning of the SNARE proteins may result in adult-onset diabetes, for example. Hence, understanding the SNARE function may facilitate development of new therapeutic treatments. Apart from medical science, the cosmetics industry and nanotechnology will benefit from a better understanding of protein functioning.
Source:
cordis.europa.eu
Related News Press |
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||