Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cancer study shows power of interdisciplinary approach

Abstract:
A UCLA cancer study reported in this month's Nature Nanotechnology validates earlier work by MIT engineers, and is emblematic of an explosion in research at the intersections of engineering, the life sciences and medicine, according to MIT Dean of Engineering Subra Suresh.

Cancer study shows power of interdisciplinary approach

CAMBRIDGE, MA | Posted on December 3rd, 2007

Since about 2002, Suresh and colleagues have applied state-of-the-art techniques for the study of nanoscale mechanical properties of materials to the study of the physical characteristics of living cells, with a particular emphasis on infectious diseases and cancer. In several papers over the past three years, they have shown that metastatic, or spreading, pancreatic cancer cells are significantly softer (less stiff) than their benign and nonmetastatic counterparts. The results paved the way for a potential new diagnostic test for the disease.

The UCLA work takes the research an important step further. Those researchers, led by James K. Gimzewski, analyzed live cancer cells taken from body cavity fluids from the lung, breast and pancreas of patients with suspected metastatic cancer. Among other things, fluid samples contain both benign and metastatic cells for direct comparison.

Using biomechanical techniques similar to those of the Suresh team, Gimzewski and colleagues found that cancer cells were nearly four times softer than their benign counterparts from the same fluid sample.

Suresh, who wrote an accompanying commentary to the UCLA paper in Nature Nanotechnology, describes such a nanomechanical approach as a potentially powerful means for detecting cancer along with other tools currently used for diagnosis.

"This is a good example of an intersection of engineering with life sciences and medical practice," Suresh, who is also the Ford Professor of Engineering, told the News Office in an interview. "We've brought tools that the medical community is not generally aware of to probe a human disease, in this case cancer."

The UCLA and MIT work toward a potential new diagnostic method for cancer is just one example of what can be achieved when engineers and scientists work together on the study of human diseases, Suresh said, adding that such collaborations between engineers and researchers in the life sciences are part of a rapidly growing trend.

As an example, he cited MIT's recent announcement of plans to build the David H. Koch Institute for Integrative Cancer Research, which will bring together scientists and engineers under one roof to develop new and powerful ways to detect, diagnose, treat and manage cancer.

"The recently announced Koch Institute … will provide a forum to develop many such interactions among faculty members from the schools of engineering and science," he said.

####

For more information, please click here

Contacts:
77 massachusetts avenue
room 11-400
cambridge, ma 02139-4307
617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project