Home > Press > Targeted Dendrimer Advances in Preclinical Studies
Abstract:
Although a variety of nanoparticles continue to show promise for improving cancer imaging and therapy, regulators and drug developers are concerned that these delivery systems may prove difficult to manufacture on a consistent basis, which is key for any agent designed for use in humans. A new study from James Baker, Jr., M.D., PI, Cancer Nanotechnology Platform Partnership at the University of Michigan, and colleagues provides data showing that such concerns can be overcome.
Writing in the journal Anti-Cancer Drugs, the investigators present the results of studies designed to show that they could achieve consistent and specific targeting and cell-killing activity across multiple manufacturing batches of a dendrimer-based therapeutic agent. To assess targeting and cytotoxicity simultaneously, the investigators developed a novel system for growing in the same culture dish both targeted and nontargeted cells and distinguishing between the two by a difference in color. This "coculture" system comprises tumor cells that express a high-affinity folic acid receptor (FA+) and a similar tumor cell line that does not (FA-). The researchers modified the FA+ cells to also express a red fluorescent protein and the FA- cells to express a green fluorescent protein.
The investigators prepared one batch of a dendrimer-folic acid-methotrexate formulation for testing, and a contract manufacturer prepared three additional batches. Chemical analysis showed that the four lots were comparable. The researchers then treated cocultured cells with each of the four batches or with free methotrexate as a control. These assays produced consistent results across all four batches and demonstrated that the dendrimer was toxic only to targeted cells. In contrast, methotrexate alone was toxic to both FA+ and FA- cells.
This work is detailed in the paper "Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates." This work was supported by the NCI's Alliance for Nanotechnology in Cancer. An abstract of this paper is available through PubMed.
####
About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580
Copyright © National Cancer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Abstract- “Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates.”
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||